
Scalable Multi-Agent Reinforcement Learning for
Residential Load Scheduling under Data

Governance
Zhaoming Qin, Graduate Student Member, IEEE, Nanqing Dong, Di Liu, Zhefan Wang, and Junwei

Cao, Senior Member, IEEE

Abstract—As a data-driven approach, multi-agent re-
inforcement learning (MARL) has made remarkable ad-
vances in solving cooperative residential load scheduling
problems. However, centralized training, the most com-
mon paradigm for MARL, limits large-scale deployment in
communication-constrained cloud-edge environments. As
a remedy, distributed training shows unparalleled advan-
tages in real-world applications but still faces challenge
with system scalability, e.g., the high cost of commu-
nication overhead during coordinating individual agents,
and needs to comply with data governance in terms of
privacy. In this work, we propose a novel MARL solution
to address these two practical issues. Our proposed ap-
proach is based on actor-critic methods, where the global
critic is a learned function of individual critics computed
solely based on local observations of households. This
scheme preserves household privacy completely and sig-
nificantly reduces communication cost. Simulation experi-
ments demonstrate that the proposed framework achieves
comparable performance to the state-of-the-art actor-critic
framework without data governance and communication
constraints.

I. INTRODUCTION

As ultimate consumers in the electricity transmission chain,
residential loads account for nearly 40% of total electricity
consumption in the developed countries (e.g., about 38.4% in
the U.S. in 2022 [1]). The large flexibility of residential loads
provides a great potential for energy regulation and scheduling,
promoting the vigorous development of smart homes [2]. By
integrating multiple smart homes, the residential microgrid can
aggregate the capacity of load scheduling and reduce the total
energy costs. So far, the load scheduling of the residential
microgrid has gained increasing attention [3]–[5].

In recent years, the breakthroughs in multi-agent reinforce-
ment learning (MARL) have led to new solutions to the

This work was supported in part by National Key Research and
Development Program of China under Grant No. 2022YFE0140600, and
in part by the Shanghai Artificial Intelligence Laboratory.

Z. Qin is with the Automatic Control Laboratory, EPFL, Lausanne
1015, Switzerland. (email: zhaoming.qin@epfl.ch)

N. Dong and Z. Wang are with the Shanghai Artificial
Intelligence Laboratory, Shanghai, 200232, China. (emails:
{dongnanqing,wangzhefan}@pjlab.org.cn)

D. Liu is with the Department of Automation, Tsinghua University,
Beijing, 100084, China. (email: kfliudi@mail.tsinghua.edu.cn)

J. Cao is with the Beijing National Research Center for Information
Science and Technology, Tsinghua University, Beijing 100084, China.
(email: jcao@tsinghua.edu.cn)

Corresponding authors: N. Dong, D. Liu, and J. Cao.

load scheduling problem [6]. First, the residential microgrid
with multiple households is naturally modeled as a multi-
agent environment where each household is regarded as an
agent. Second, without any prior knowledge of the residential
microgrid, model-free reinforcement learning (RL) techniques
can learn practical policies by interacting with the environment
and then perform real-time execution based on the learned
policies [7]. Third, the emerging cloud-edge computing struc-
ture provides an ideal physical implementation for MARL [8].

Parallel to the design of MARL algorithms, another aspect
to be considered is data governance, which is a collection
of processes, policies, standards, and metrics that ensure the
effective and efficient use of load scheduling data. Although
the massive effort has been dedicated to developing the
cooperative load scheduling schemes using MARL [9]–[14],
the privacy issues are tended to be ignored in these studies.
Accessing household information during MARL training may
breach user privacy. For example, residents’ behaviors can be
deduced from the arrival and departure times of household
electric vehicles (EVs), and temperature preferences can be
inferred from the thermal comfort constraints [15]. Since user
data may contain sensitive information, strict data regulations
have been established to ensure data governance [16]. There-
fore, it is essential to develop a practical MARL framework to
address the cooperative load scheduling problem in the cloud-
edge environments while complying with data governance.

A. Literature Review

1) Multi-Agent Reinforcement Learning: Several MARL
frameworks have been developed to date [17], [18]. A simple
framework is to integrate all agents as a single agent with
joint state space and action space, where a single-agent RL
algorithm is applied [19]. For instance, a centralized actor-
critic (CAC) framework using prioritized deep deterministic
policy gradient (DDPG) is employed to manage all devices of
a residential multi-energy system [20]. Although this fully cen-
tralized framework theoretically allows cooperative behaviors
across individual agents, it fails on simple cooperative MARL
problems due to lazy agents in practice [21]. Furthermore,
the joint action space expands exponentially as the number of
agents increases, leading to poor scalability [22]. Additionally,
the centralized paradigm requires collecting local observations
from all agents during the online execution phase, which
imposes high demands on real-time communication. A remedy

is distributed actor-critic framework [23], in which each agent
can access the observations of its neighbors via distributed
communications networks.

In this work, we pursue fully decentralized policies depend-
ing only on local observations of agents. A straightforward
framework to learn decentralized policies is to train the
agents independently [17]. For example, an independent actor-
critic (IAC) framework using the proximal policy optimization
(PPO) algorithm is adopted to optimize a multi-household
energy management scheme [9], while the independent Q-
learning is applied to the demand response programs for
different components in residential buildings [24]. From the
perspective of a single agent in such a framework, the
behaviors and policies of other agents are not observable
[18]. Consequently, even if an agent’s own policy remains
unchanged, the global reward function it receives varies with
the policies of other agents. Thus, each agent interacts with
a non-stationary environment, making the learning process
highly unstable.

To address the non-stationary environment during the learn-
ing process of decentralized policies, the framework decentral-
ized actors with centralized critic (DACC) is widely adopted
by previous MARL approaches [18], [25]–[27]. Its centralized
critic has access to all agents’ information during learning,
ensuring accurate evaluation on the global rewards. While,
the decentralized actors, i.e., the decentralized policies, are
executed using their corresponding agents’ information. Thus,
DACC mitigates the challenge of non-stationary environments
during learning. Nevertheless, these advantages of DACC
come at the expense of agent privacy, since all agents’ in-
formation must be shared with the centralized critic during
learning.

Although few MARL algorithms take privacy issues into
account [28], some have the potential to preserve agents’
private information during the training phase. For instance,
in the multi-actor-attention-critic (MAAC) algorithm [26], the
original observations and actions are first encoded into embed-
dings by local functions. This approach ensures that the central
attention accesses only the encoded data. Ye et al. [14] lever-
aged this characteristic to protect consumer privacy in local
electricity markets. However, MAAC does not perfectly guar-
antee privacy, as the high-dimensional embeddings of agents
remain vulnerable to privacy attacks. These embeddings, de-
spite being encoded representations, could be exploited by
adversaries via advanced machine learning techniques, such
as deep learning-based inversion attacks or statistical inference
methods. Making matters even worse, in the case that attackers
gain access to the detailed parameters or structures of the local
embedding functions, the original observations and actions
could be (partially) reconstructed, posing a serious threat to
agents’ sensitive information including position trajectories
and behavioral preferences. Finally, it is impractical to deploy
MAAC on a large scale in communication-restricted cloud-
edge environments. The transmission of high-dimensional in-
formation between agents and the cloud significantly increases
the communication burden in large-scale systems. Further-
more, the inherent self-attention mechanism incurs noticeable
computational costs as the number of agents increases.

2) Data Governance: Data governance is a data man-
agement concept focused on ensuring the availability, us-
ability, integrity, and security of the data [29]. In the era
of information technology, data privacy has emerged as a
prominent topic of ethical and legal discussion [30]. This work
specifically addresses data privacy issues within the scope of
data governance. Due to the risk of information leakage, data
regulations [16] prohibit the data holder from transferring user
data out of local devices in any form [31]. Note that this con-
straint differs from the privacy-persevering techniques widely
adopted in the literature, such as differential privacy [32].
While integrating privacy-persevering techniques with MARL
can safeguard user privacy in data transmission, it does not
necessarily fulfill the requirements of data governance.

3) Edge artificial intelligence: Recent research has intro-
duced various technologies to enhance the efficiency and
security of MARL in edge computing environment. Chen
et al. explored edge multi-task transfer learning, providing
valuable insights into data-driven task allocation methods
crucial for optimizing multi-agent environments [33]. Xiong et
al. proposed a RL-based framework that intelligently allocates
resources across edge devices, with the goal of improving key
performance indicators such as latency and energy efficiency
[34]. These studies underscore the importance of combin-
ing advanced RL techniques with robust data governance
frameworks to ensure privacy and efficiency of residential
microgrids.

B. Contributions

In this work, we intend to minimize the total operation costs
of a residential microgrid within a communication-restricted
cloud-edge environment, while effectively preserving local
household information. We formulate this cooperative load
scheduling problem as a finite-horizon decentralized partial
observable Markov decision process (Dec-POMDP). To facil-
itate collaborative control of distributed demand-side resources
and ensure user privacy, we introduce decentralized actors
with distributed critics (DADC), a novel MARL framework
designed with data governance in mind. In the proposed frame-
work, each household operates an individual actor and critic
within the edge layer, relying solely on its local information.
The local critic networks compute scalar value functions for
each household, which are then transmitted to the cloud layer.
By restricting communication to scalar values rather than
exchanging raw data or model parameters, the framework
ensures robust data governance. At the cloud layer, a global
value function is estimated using a feed-forward network,
which takes as input the concatenation of all individual value
functions. This hierarchical learning structure preserves pri-
vacy while enabling global optimization. The learning process
for both the distributed critics and the cloud-level network is
achieved by backpropagating the gradients derived from global
temporal-difference (TD) updates, which are computed in the
cloud layer based on the global reward signal. This method
effectively balances privacy, computational efficiency, and
system performance, making it well-suited for decentralized
optimization and deployment in resource-constrained edge

environments. The contributions of this paper are summarized
as follows.
1. We propose DADC, a novel MARL framework to address
the cooperative load scheduling task of a residential microgrid
while minimizing user privacy leakage. Unlike existing MARL
frameworks used in most load scheduling schemes [9]–[14],
[19], [20], DADC ensures that each household only shares an
encoded scalar value with the cloud layer during each time
step of training phase, efficiently preserving private data.
2. In DADC, the global value function is computed using
only the scalar individual values, and the cloud-level network
enables linear computational complexity with respect to the
number of households. These features facilitate the scalable
deployment of DADC in the cloud-edge environments.
3. We empirically evaluate DADC using real-world load data,
providing practical insights into the problem formulated in
this work. Our results demonstrate that DADC significantly
outperform IAC, a seminal baseline under data governance.
Furthermore, DADC can achieve comparable performance
to DACC, a general MARL framework without privacy-
preserving mechanisms, highlighting its superiority in main-
taining privacy while achieving efficient load scheduling.

II. PROBLEM FORMULATION

A. Cloud-Edge Environment

Consider a cloud-edge environment for residential load
scheduling. As illustrated in Fig. 1, we assume an isolated
microgrid at the edge layer, consisting of a set D = {1, . . . , n}
of n households and distributed generators (DGs). The DGs
and households communicate bidirectionally with cloud layer
to maintain power balance and coordinate the operation of
all flexible loads. Without loss of generality, each household
is assumed to be equipped with base loads, one EV and
one air conditioner (AC). Moreover, each household has one
home energy management system (HEMS) that schedules
controllable appliances including AC and EV. To ensure data
governance, each HEMS can only access public information
from the DGs along with its own local information. We
consider this load scheduling problem over a horizon T time
steps, with each step of duration ∆t, i.e., t ∈ T = {1, . . . , T}.

residence 1

HEMS 𝑛HEMS 𝑛

residence 𝑛

…

DGs

…

Cloud

Base loads

EV

residence 𝑖

…

…

AC

Edge

residence 𝑛

Electricity Flow
Information Flow
Control Flow

Fig. 1. The cloud-edge environment for residential load scheduling.
The DGs supply electricity to households. The HEMSs take as input
public information from the DGs and private observations from local
households, and generate control signals for local flexible appliances.

B. System Model
The ACs can be dynamically adjusted to maintain thermal

comfort of the occupants in the corresponding households. The
indoor temperature dynamics for household i are described as
follows [11],

T in
i,t+1 = FAC

i

(
T in
i,t, T

out
i,t , P

AC
i,t , ϱi,t

)
, (1)

where FAC
i (·) denotes the transition function of indoor tem-

perature with respect to four variables, i.e., current indoor
temperature T in

i,t, outdoor temperature T out
i,t , AC power PAC

i,t ,
and disturbance ϱi,t. Accurately modeling thermal dynamics
is typically intractable. Therefore, we assume that the explicit
form of the function FAC

i (·) is unknown. The working power
of ACs can be continuously adjusted within a range,

0 ≤ PAC
i,t ≤ P

AC

i , (2)

where P
AC

i denotes the maximum working power of the AC in
household i. To ensure the thermal comfort of occupants, the
following indoor temperature constraint should be satisfied,

T in
i ≤ T in

i,t ≤ T
in

i , (3)

where T in
i , T

in

i denote the lower and upper limits of comfort-
able temperature in household i, respectively.

The dynamics of EV battery energy are as follows,

EEV
i,t+1 =

Einit

i , if t+1=tai ,

EEV
i,t +ηciP

EV
i,t ∆t, if tai≤t<tdi and PEV

i,t ≥0,
EEV

i,t +PEV
i,t ∆t/ηdi , if tai≤t<tdi and PEV

i,t <0,

0, otherwise.
(4)

In (4), the variables EEV
i,t and PEV

i,t stand for the battery energy
and the charging/discharging power of the EV in household i
at time step t, respectively. The parameters Einit

i , ηci , ηdi , tai and
tdi are the initial battery energy, the charging and discharging
efficiency coefficients, the arrival time and departure time of
the EV in household i, respectively. The target EV battery
energy should be satisfied at the departure time of the EV,

EEV
i,tid
≥ Etarg

i , (5)

where Etarg
i denotes the target battery energy of the EV in

household i. Moreover, the charging/discharging power and
the battery energy of the EV must be maintained within a
range,

−PEV

i ≤ PEV
i,t ≤ P

EV

i , EEV
i ≤ EEV

i,t ≤ E
EV

i , (6)

where P
EV

i , EEV
i and E

EV

i represent the maximum charg-
ing/discharging power, the minimum and maximum battery
energy of the EV in household i.

We assume that DGs have sufficient generation capacity to
maintain the power balance of the whole microgrid. Moreover,
at each time step t, DGs are automatically adjusted to meet
residential electricity needs,

PDG
t =

∑
i∈D

(
PBL
i,t + PAC

i,t + PEV
i,t

)
, (7)

where PBL
i,t denotes the power of base loads in household i at

time step t.

C. Objective Function

The total operation cost of the microgrid can be divided into
two parts, i.e., the generation cost of DGs and the adjustment
cost of DGs. The former is determined by the output power
of DGs. The latter depends on the fluctuation of the output
power of DGs because the frequent power adjustment would
degrade the service life of DGs. Thus, the total cost at time
step t can be presented as follows.

Ct = G1

(
PDG
t

)
+G2

(
PDG
t − PDG

t−1

)
, (8)

where G1(·) is the generation cost function of DGs with
respect to current output power of DGs [35], [36], and G2(·)
is the adjustment cost function of DGs with respect to the
difference between the output power of DGs at current and last
time step. At each time step i, the DGs report the incurred cost
to the cloud. It is notable that the functions G1(·) and G2(·)
can be non-linear, thus the individual cost functions specific
to households are not available in general.

Based on the above-mentioned models and objective func-
tion, a stochastic optimization problem minimizing the long-
term microgrid operation cost can be formulated as follows,

min
PAC

i,t ,PEV
i,t ,i∈D,t∈T

E

[∑
t∈T

Ct

]
s.t. (1)− (8)

(9)

D. Dec-POMDP Formulation

In this subsection, we formulate the cooperative load
scheduling problem following Dec-POMDP. The agents in
Dec-POMDP are specified as the HEMSs in the microgrid.
Since model-free MARL does not rely on the prior knowl-
edge of state transition probability distribution, we focus on
three components, the global state and local observations, the
actions, and the global reward function.

1) Dec-POMDP: Let P(Ω) denote the set of all proba-
bility distribution over the space Ω. A finite-horizon Dec-
POMDP [22] can be mathematically described by a tuple
⟨D,S,A,O,Ps,Po,R, T ⟩, where

• D denotes the set of HEMSs.
• S denotes the space of global states.
• A ≡ ×i∈DAi denotes the set of joint actions.
• O ≡ ×i∈DOi denotes the set of joint observations.
• Ps : S×A 7→ P(S) denotes the state transition function.
• Po : S × A 7→ P(O) denotes the joint observation

function.
• R : S ×A×S 7→ R denotes the global reward function.
• T ∈ N+ denotes the horizon.
At every time step t, each HEMS i takes an action ai,t

from its individual action space Ai, forming a joint action at

which leads to a transition to a new state st+1∼Ps(st,at)
and a global reward rt = R(st,at, st+1). Moreover, the
environment emits a joint observation ot+1 ∼ Po(st+1,at)
where each HEMS i only draws its own observation oi,t+1.

The goal of the finite-horizon Dec-POMDP is to learn a joint
policy π : O × A 7→ [0,+∞) mapping a joint observation
to a probability distribution over actions in continuous joint

action space, which maximizes the expectation of accumulated
global reward

∑T
t=1 rt. To evaluate the performance of the

joint policy π, we define the joint state value function as

V π(ot) := Est+1:T ,ot+1:T ,at:T∼π

[T∑
t′=t

rt′ |ot

]
. (10)

Here, E denotes the expectation. The subscript of E enu-
merates the variables being integrated over, where the global
states, joint observations and actions are sampled sequentially
from the dynamics model Ps, Po and policy π, respectively.
Similarly, the joint state-action value function is defined as

Qπ(ot,at) := Est+1:T ,ot+1:T ,at+1:T∼π

[T∑
t′=t

rt′ |ot,at

]
. (11)

The advantage function Aπ(ot,at) := Qπ(ot,at) − V π(ot)
measures whether the action at is better than the default
behavior of policy π.

2) Global state and local observations: In the considered
residential load scheduling scenario, the global state st incor-
porates the information owned by all HEMSs and the infor-
mation from DGs. Since MARL algorithms do not operates
over the global state, we omit the mathematical expression of
st. To enable the cooperative scheduling of all households, the
power of DGs is viewed as common information and provided
to each HEMS. The observation of HEMS i ∈ D is

oi,t =
[
t, PDG

t , PBL
i,t , P

PV
i,t , T

out
i,t , T

in
i,t, E

EV
i,t , E

targ
i , tdi

]
, (12)

Here, the observation oi,t includes current time step t, which
enables the policies to adapt to time-dependent behaviors, such
as outdoor temperature and EV arrival/departure time. The last
seven components in (12) are local information of household
i which should be preserved.

3) Actions: The problem (9) involves two categories of
decision variables, namely the working power of ACs and the
charging/discharging power of EVs. To facilitate the training
of MARL, we unify the continuous action spaces of all
decision variables to [−1, 1] by introducing control signals for
ACs and EVs. Moreover, by designing the control signals, we
rule out the possibility of generating policies that cause the
loss of occupant comfort.

The mapping between the working power and control signal
of AC of household i is designed as follows,

PAC
i,t =

P

AC

i , if T in
i,t ≥ T

in

i ,

0, if T in
i,t ≤ T

in
i ,

0.5P
AC

i (uAC
i,t + 1), otherwise.

(13)

Provided that uAC
i,t ∈ [−1, 1], the working power PAC

i,t is forced

to range between [0, P
AC

i]. Furthermore, the scheme (13)
ensures the priority of occupant thermal comfort: AC is forced
to run at the maximum power P

AC

i when the room temperature
exceeds the upper limit of comfortable temperature T

in

i , and
turn off when the room temperature is below the lower limit
of comfortable temperature T in

i . The power of AC can be
adjusted only when the temperature constraint (3) is satisfied.

Considering that the EV charging task (5) should be com-
pleted before the departure time, the following inequality must
be checked for each time step tai ≤ t < tdi ,

EEV
i,t + ηciP

EV

i

(
tdi − t

)
∆t ≥ Etarg

i , (14)

where the left part indicates the EV battery energy at departure
time if the EV is charged at maximum charging power during
remaining charging time. Once inequality (14) is not satisfied,
the corresponding EV is forced to be charged at maximum
power. Therefore, the following EV charging scheme during
the charging time is formulated,

PEV
i,t =

P

EV

i , if (14) not satisfied,

max{0, PEV

i uEV
i,t }, else if EEV

i,t ≤ E
EV
i ,

min{0, PEV

i uEV
i,t }, else if EEV

i,t ≥ E
EV

i ,

P
EV

i uEV
i,t , otherwise.

(15)

The 2nd and 3rd conditions in (15) guarantees that the battery
energy of EV in household i satisfies the constraint (6).

Finally, the individual action of HEMS i at time step t is
presented as ai,t =

[
uAC
i,t , u

EV
i,t

]
∈ [−1, 1]2 , i ∈ D. The joint

action formed by individual actions of all HEMSs at time step
t is at = [a1,t, . . . , an,t] ∈ [−1, 1]2n .

4) Reward: The load scheduling problem intends to mini-
mize the total operation cost, while the goal of Dec-POMDP
is to maximize the accumulated reward. Therefore, we define
the immediate global reward taking joint action at in state st
as the negative cost of DGs, i.e., rt = −Ct.

III. MARL FRAMEWORK IN CLOUD-EDGE
ENVIRONMENT UNDER DATA GOVERNANCE

In this section, we introduce DADC, a novel actor-critic
framework designed to enable HEMSs to strictly preserve local
observations while facilitating efficient collective training. We
then elaborate the distributed training process for DADC,
utilizing the PPO algorithm.

A. Architecture

DADC employs a structure consisting of decentralized ac-
tors and distributed critics. The critics are capable of estimat-
ing both the state value function and the action-state value
function. For demonstration purposes, Fig. 2 illustrates the
structure of DADC, with critics approximating the state value
function. The details of this structure are elaborated below.

1) Decentralized Actors: Each HEMS learns a stochastic
policy πi : Oi × Ai 7→ [0,+∞), parameterized by θi, which
maps its local observation to a probability distribution over its
continuous action space. Note that the policy πi is conditioned
only on the local observation oi. The joint policy π is then
constructed from the decentralized policies {πi}ni=1:

π (at|ot) :=

n∏
i=1

πi(ai,t|oi,t; θi), (16)

where at = (ai,t, ..., ai,t) and ot = (oi,t, ..., oi,t).

…

#",!

1!#!

.",!#$,!.$,!#%,!.%,!

…

Environment

Actor 1 Critic 1 Actor / Critic /

Feed-forward network

Actor " Critic /

(1%,! , … , 1",!)

sample sample sample

Fig. 2. The framework of DADC in the cloud-edge environment. At the
edge layer, the actor network and critic network of each HEMS yield
individual policy and a scalar value vi,t only using its local observation
oi,t, respectively. The individual action ai,t is then sampled according
to the generated policy, and the scalar value vi,t is communicated to
cloud. At the cloud layer, a learnable feed-forward network maps the
concatenation of n scalar values to the global value estimation vtot.

2) Distributed Critics: DACC adopted by existing coopera-
tive multi-agent actor-critic algorithms has a centralized critic
to approximate the global value function of the joint policy,
which requires the global state including the local observations
of all agents, although the decentralized execution is allowed
after training. To ensure data governance, the proposed DADC
decomposes the approximation of the global value function
into two steps,

vi,t = Vi(oi,t;ϕi), i = 1, . . . , n, (17a)
V π(ot) ≈ V tot (v1,t, ..., vn,t;φ) . (17b)

In (17a), individual critic Vi(·;ϕi) : Oi → R, parameterized
by ϕi, maps local observation oi,t to a scalar value vi,t at
the edge layer. Subsequently, each HEMS transmits vi,t to the
cloud. In (17b), a feed-forward network V tot(·;φ) : Rn → R,
parameterized by φ, maps the concatenation of received n
scalar values to the global value estimation at the cloud layer.
Put differently, the approximation of the global value function
at the cloud layer only requires the collection of the individual
value functions, which are scalar values encoded by individual
critics of agents at the edge layer. This design brings three key
advantages.

• The local observations of agents are preserved strictly
since it is intractable to analyze or deduce the original
information through a scalar.

• The communication burden between the cloud layer and
the edge layer is significantly reduced. For instance,
when comparing DADC to MAAC, The local embedding
functions in MAAC send transmit vectors of dimension
d to the central attention mechanism. Thus, the total
communication complexity in a cloud-edge environment
using MAAC is O(nd) whereas with DADC it is reduced
to is O(n).

• The computational burden at the cloud layer is also
reduced by the use of a feed-forward network. The
computational complexity is O(n) if the hidden layers
of the feed-forward network have fixed number of units,
whereas MAAC’s complexity is O(n2d) due to the self-
attention network.

Therefore, the proposed DADC framework facilitates large-
scale deployment in the cloud-edge environment.

3) Inner Structure: The individual actors and critics and the
feed-forward network are illuminated in Fig. 3. Each agent’s
policy is represented by a combination of a gate recurrent unit
(GRU) and multi-layer perceptrons (MLPs). The GRU module,
a gating mechanism in recurrent neural networks, uses the
hidden state hπi,t−1 to retain information from previous time
steps, thereby enabling the agent to mitigate the challenges
posed by partial observability. Therefore, the integration of a
GRU module and MLPs endows the individual actor network
with the potential to generate effective policies based on limit
observations. Similar to the structure of the individual actor
network, the individual critic network also incorporates a GRU
module and two MLPs. The feed-forward network at the cloud
layer is entirely composed of MLPs.

MLP

GRU

MLP

#$,!

ℎ$,!)%*

'$ ⋅ |#$,!; *$

ℎ$,!*

$$ #$,!; &$

(a) Actor / (b) Critic /

MLP

GRU

MLP

#$,!

ℎ!)%,+$ ℎ!,+$
MLP

(c) Feed-forward network

1!#!

(1$,! , … , #",!)

Fig. 3. (a) Individual actor network. This network takes as input the
local observation oi,t and the hidden state hπ

i,t−1, and generates the
probability distribution over the individual action space. (b) Individual
critic network. This network takes as input the local observation oi,t
and the hidden state hv

i,t−1 as input, and yields the individual value
estimation. (c) Feed-forward network. This network take as input the
concatenation of n scalars, and outputs the global value estimation.

B. Distributed Training
DADC can be trained using various RL algorithms in a

distributed manner. For demonstration purposes, we employ
the PPO algorithm [37] as an example and adapt the single-
agent PPO to the multi-agent settings within a cloud-edge
environment.

We first recall the single-agent PPO with an actor π and
a critic V . Given a policy π parameterized by θ̃, a batch of
samples can be obtained, and the estimate of the advantage
function Ât can be computed by the general advantage esti-
mation (GAE) method [38]

Ât :=

T∑
t′=t

λt
′−t(−V (ot′ ; θ̃v) + rt′ + V (ot′+1; θ̃v)),

where parameter λ is used to control the trade-off between
variance and bias of the estimate, and θ̃v is the parameter of
the critic V . Then, the actor network is updated by minimizing
the loss

La(θ) := Êt[min(wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât)].

Here, the expectation Êt[·] denotes the empirical estimation
over a finite batch of samples. The probability ratio wt(θ) is

defined as π(at|ot;θ)

π(at|ot;θ̃)
. The hyperparameter ϵ limits the change

in the probability ratio. The critic network V is updated by
minimizing Lc(θv) := Êt[(V (ot; θv)− V (ot; θ̃v)− Ât)

2].
In the DADC framework, the global value function is

approximated by (17). Consequently, the global critic loss in
the multi-agent settings is computed as

Lc := Êt

[
(V tot(v1,t, ..., vn,t;φ)− ṽtot − Ât)

2
]
. (18)

where ṽtot := V tot(v1,t, ..., vn,t; φ̃). By applying the the
chain rule, the gradient of the feed-forward network at the
cloud layer is given by △φ = ∂Lc

∂φ , while the gradient of
the individual critic i at the edge layer is △ϕi = ∂Lc

∂Vi

∂Vi

∂ϕi
.

Note that the gradient term ∂Lc

∂Vi
must be communicated from

the cloud to HEMS i. In this manner, each individual critic
Vi(·;ϕi) is trained by backpropagating gradients from the
global TD updates, which depends on the joint global reward.
In other words, Vi(·;ϕi) is learned implicitly rather than from
any reward specific to HEMS i.

The individual actor loss function is defined as

La
i (θi) = Êt

[
min(wi,t(θi)Ât, clip (wi,t(θi), 1−ϵ, 1+ϵ) Ât)

]
,

(19)
where wi,t(θi):=

πi(ai,t|oi,t;θi)
πi(ai,t|oi,t;θ̃i)

. Note that the individual loss
La
i (θi) is calculated locally by HEMS i once the global value

function is received. Then, the gradient of individual actor i
can be computed as △θi = ∂La

i

∂θi
.

The distributed training process in the cloud-edge environ-
ment is detailed in Algo. 1. Each training iteration is divided
into three primary stages, 1) interaction with the environment,
2) estimation of the global advantage function, and 3) param-
eter updates. In the algorithm, operations executed at the edge
layer are shaded gray, while those at the cloud layer are shaded
yellow for clarity.

In the first stage, shown in lines 4-10, agents operates in
a fully decentralized manner. At each time step, each HEMS
interacts with the environment by independently selecting and
executing its own action. The only information uploaded to
the cloud layer is the individual value estimation calculated
by each HEMS.

The cloud layer exclusively performs the second stage. As
shown in line 14, the global value function is estimated using
only the scalar value estimates received from HEMSs, without
requiring access to their local observations or actions. The
estimation of the global advantage function at time step t
employs a backward-view TD method, utilizing the advantage
function at time step t+ 1.

The third state involves a collaborative update process
between the edge and cloud layer. HEMSs first calculate their
individual value functions using the updated parameters and
transmit these scalar values to the cloud layer. The cloud
computes the gradients of the global critic loss with respect
to both the feed-forward network parameters and individual
value functions. These gradients are used to update the feed-
forward network and are distributed back to the respective
HEMSs. Finally, each HEMS update its local actor and critic
networks using the received gradients and global advantage
functions.

Algorithm 1 Distributed Training for DADC with PPO
1: Initialize θi and ϕi for each HEMS; initialize φ for feed-

forward network.
2: for episode = 1 to episodemax do
3: % Interact with the environment
4: for t = 1 to T do
5: for all HEMSs i do
6: θ̃i ← θi, ϕ̃i ← ϕi
7: Sample action ai,t ∼ πi(·|oi,t; θ̃i).
8: Execute action ai,t and observe oit+1.
9: p̃i,t ← πi(ai,t|oi,t; θi), ṽi,t ← Vi(oi,t;ϕi).

10: Upload ṽi,t to cloud. ▷ Comm.
11: % Estimate global advantage function
12: ÂT ← 0, ṽtotT+1 ← 0, φ̃← φ
13: for t = T to 1 do
14: ṽtott ← V tot(ṽ1,t, ..., ṽn,t; φ̃)
15: Ât ← λÂt+1 + rt + γṽtott+1 − ṽtott

16: Send {Ât}Tt=1 to each HEMS. ▷ Comm.
17: % Update parameter
18: % Edge layer
19: for all HEMSs i do
20: {vi,t}Tt=1 ← {Vi(oi,t;ϕi)}Tt=1

21: Upload {vi,t}Tt=1. ▷ Comm.
22: Lc ←

∑T
t=1(V

tot(v1,t, ..., vn,t;φ)− ṽtott − Ât)
2

23: Update φ with gradient ∂Lc/∂φ.
24: Send {∂Lc/∂vi,t}Tt=1 to HEMS i. ▷ Comm.
25: % Edge layer
26: for all HEMSs i do
27: △ϕi ←

∑T
t=1 ∂Lc/∂vi,t · ∂vi,t/∂ϕi

28: Update ϕi with gradient △ϕi.
29: for t = 1 to T do
30: wi,t ← πi(ai,t|oi,t; θi)/p̃i,t
31: La

i ←
∑

min(wi,tÂt, clip(wi,t, 1− ϵ, 1 + ϵ)Ât)

32: △θi ←
∑T

t=1 ∂La
i /∂wi,t · ∂wi,t/∂θi

33: Update θi with gradient △θi.
34:

IV. EXPERIMENTS

In this section, we present the simulation experiments
and report the empirical results. We begin by detailing the
experimental setup of simulations. Next, we compare the
proposed DADC with existing actor-critic frameworks using
PPO, and analyze the effectiveness of the learned policies in
the context of cooperative load scheduling. Finally, we access
the scalability of DADC by evaluating its performance across
varying numbers of households.

A. Experiment Setup and Implementation

1) Environment: The simulation environment is built upon
OpenAI Gym [39]. The dynamics functions, cost functions and
important household parameters are provided in the Appendix.
We consider the energy management problem over a one-
day period, using a time step of 15 minutes, resulting in
a time horizon of T = 96. Real-world power assumption
data and temperature data are employed to model the power

of basic loads and outdoor temperature, sourced from Pecan
Street Database [40] and NOAA [41], respectively. We first
consider a standard scenario consisting of 10 heterogeneous
households in the following three subsections. In Sec. IV-E, we
investigate the performance of the proposed DADC in large-
scale scenarios.

2) Network Architecture: The individual critic networks
share the same structure, consisting of three components, as
shown in Fig. 2, a fully-connected MLP with two layers of
64 units followed by tanh nonlinearity, a GRU layer with 64
units, and a fully-connected MLP with one hidden layer of
128 units and one ouput layer of 1 units.

To represent the stochastic policy, we use a Gaussian
distribution N (µ, σ2) in this work. Therefore, the individual
actor networks have one tanh output for the mean µ and
another sigmoid output for the variance σ2. The non-output
layers of individual actor networks share the same structure
with the individual critic networks.

The MLP of the feed-forward network in the cloud layer is
consisted of one hidden layer of 64 units followed by tanh
nonlinearity and one output layer of 1 units.

3) Baseline Frameworks: Two baseline frameworks are
considered: IAC and DACC. Notably, one of primary goals
of this study is to ensure data governance. In contrast to the
proposed DADC and IAC, the DACC framework raises non-
trivial concerns regarding both privacy and communication
costs. Thus, we report the performance of DACC only in
Sec. IV-B and Sec. IV-C for quantitative comparison.

Under the IAC framework, each HEMS comprises an inde-
pendent actor and critic, following the same architecture as the
individual actor and critic in DADC. The actor and critic of
each HEMS are trained using the single-agent PPO algorithm,
thereby eliminating the need for communication among agents.

The DACC framework maintains decentralized actors for
agents and a centralized critic. The decentralized actors share
the same network as the individual actors in DADC, while
the centralized critic adopts the network shown in Fig. 3 (b),
taking the joint observation of all HEMSs as input rather than
the local observation of a single HEMS.

4) Shared Hyperparameters: We optimize the actor and
critic networks using Adam with the learning rate of 1×10−4

and 3 × 10−4, respectively. The network parameters are
updated every 120 environment steps with the batch size of
120. We run 10 parallel environments to improve the training
efficiency. The case studies are conducted on a server with
an 8-core AMD Ryzen 7 3700X processor and one single
GeForce RTX 2080 GPU.

B. Algorithm performance

First, we compare the proposed DADC framework with
other actor-critic frameworks on the cooperative load schedul-
ing problem. For a fair comparison, each frameworks is trained
with PPO for six times with different random seeds. In
PPO, the GAE parameter is set to be 0.95, and the network
parameters are updated 3 times per sample [37].

We apply the following evaluation procedure during train-
ing: for each trial, training is paused every 1000 episodes, and

10 independent episodes are run with each agent performing
decentralized action selection. The cumulative reward for each
episode is termed the episode reward.

The training curves are shown in Fig. 4. We observe
that IAC fails to learn stable policies, resulting in poor
performance, arguably due to the non-stationary environments
encountered by its independent agents. In contrast, DACC
leverage a global critic to facilitate more stable learning of
coordinated behaviors across agents. DADC, on the other
hand, achieves slightly better performance than DACC. The
policies of DADC escape the local minimum of DACC at
the price of a sharp performance decline at about 1 × 105

episodes. This implies that DADC has a better exploration
capability. Note that DADC preserves local information, unlike
DACC. Thus, Fig. 4 demonstrates the superior performance of
DADC over other actor-critic frameworks in this cooperative
load scheduling task.

0 50000 100000 150000 200000
Episodes

85

80

75

70

65

60

Ep
iso

de
 re

wa
rd

DADC
DACC
IAC

Fig. 4. Training curves of DADC and other frameworks. The solid curves
corresponds to the mean and the shaded region to the minimum and
maximum episode rewards over the all trials.

C. Effect of Implicit Credit Assignment

0 100000 200000 300000 400000 500000 600000
Number of updates

0.000

0.001

0.002

0.003

0.004

0.005

Va
lu

e
lo

ss

DADC
DACC
IAC

Fig. 5. The value loss for critic networks. DADC achieve the lowest
estimation bias for global value function.

As discussed in Section I-A, DACC can implicitly learn
credit assignment across agents. To demonstrate this, we plot
the value loss for critic networks in Fig. 5. We observe that
the independent critic networks in IAC exhibit the highest
estimation bias, as the fully decentralized HEMSs in IAC
cannot account for the dynamic behaviors of other HEMSs
during training.

DACC, with its centralized critic, shows comparatively
smaller value loss than IAC. However, the estimate of the
global value function remains highly unstable during training.
This instability arises because DACC’s centralized critic pro-
cesses observations from all HEMSs, making it slow to adapt
to changes in the global reward when any single HEMS adjusts
its policy.

In contrast, DADC enables all HEMSs to cooperatively
estimate the global value function through distributed critic
networks, allowing each individual value function to be
learned via end-to-end training. In Fig. 5, DADC achieves
a much lower value loss than IAC and DACC, highlighting
the effectiveness of implicit credit assignment in DADC.
This finding partially explains why DADC performs on par
with DACC, despite the cloud receiving considerably less
information from each household.

D. Effect of Load Scheduling

We next examine the control effects of DADC on the
cooperative load scheduling task. After training, we test the
policies that achieved the best evaluation performance during
the training phase. The test results, shown in Table I, indicate
that DADC reduces the average cost by 11% compared to IAC.
Notably, the adjustment cost is reduced by more than 50%.

TABLE I
TEST PERFORMANCE FOR DIFFERENT ACTOR-CRITIC FRAMEWORKS

Metrics DADC DACC IAC

Average Total Cost 58.2 ± 0.9 65.4 ± 1.2 59.5 ± 1.0
Average Generation Cost 55.8 ± 1.0 60.6 ± 1.5 56.7 ± 1.1
Average Adjustment Cost 2.4 ± 0.3 4.9 ± 0.8 2.8 ± 0.4

0 4 8 12 16 20 24
Time / h

22

24

26

28

30

32

Te
m

pe
ra

tu
re

outdoor
DADC
IAC
Tmax
Tmin

Fig. 6. Indoor temperature. The black solid and dashed lines denote
the desirable maximum and minimum indoor temperature, respectively.
The orange and green lines denote the indoor temperature curves
during one day controlled by decentralized policies with DADC and IAC,
respectively.

To present the control effects for ACs, we plot the indoor
temperature curves for a single AC over one day in Fig. 6. Both
frameworks control the indoor temperature within the specified
constraints. However, with DADC, the indoor temperature
remains closer to the upper temperature constraint when
outdoor temperatures are high, resulting in energy savings
and cost reduction compared to IAC. Additionally, the indoor

0 4 8 12 16 20 24
Time / h

0

10

20

30

40

50
Po

we
r /

 k
W

DADC

DGs
BLs
ACs
EVs

0 4 8 12 16 20 24
Time / h

Po
we

r /
 k

W

IAC

Fig. 7. Load scheduling. The blue, orange and green area denote the
power of base load, the total power of ACs and the total charging power,
respectively.

temperature curve with DADC is relatively smooth, indicating
fewer adjustments to the AC than with IAC.

To demonstrate the overall load scheduling, Fig. 7 displays
the base load power, DGs power, total charging/discharging
power of EVs, and total working power of ACs. Compared
to IAC, the cooperative load scheduling achieved by DADC
reveals two salient characteristics. First, the output power
adjustments for DGs are relatively stable, resulting to lower
adjustment costs for DGs. Second, the peak power of DGs is
lower than that with IAC. This indicates that DADC enables
HEMSs to learn decentralized policies that allow households
to cooperatively schedule load and reduce the global cost. In
contrast, IAC fails to learn such cooperative policies due to
its fully independent actor-critic structure.

E. Scalability Evaluation
The above subsections presented and discussed simulation

results for a scenario with 10 households. In this subsection,
we empirically evaluate the effectiveness of the proposed
DADC framework as the number of households increases.
Table II and Table III report two key metrics for DADC
and DACC in scenarios with 10, 100 and 1000 households.
The first metric, communication traffic between HEMSs and
the cloud, grows linearly with respective to the number of
households. The second metric, total processing time at the
cloud layer, reflects the precessing burden on the cloud.

Table II and Table III show that DADC requires less than
one-fifth of the communication overhead needed by DACC.
Moreover, as the number of households increases, the cloud
computational efficiency advantage of DADC over DACC
becomes more pronounced. Thus, DADC shows significant
scalability advantage over DACC in terms of both communi-
cation and cloud computational burdens.

TABLE II
SCALABILITY EVALUATION FOR DACC

Number of households 10 100 1000

Communication traffic (MB) 16.9 169 1690
Computation burden (hours) 0.8 3.7 33

V. CONCLUSION

This paper proposes a novel multi-agent actor-critic frame-
work, DADC, to address the cooperative load scheduling prob-

TABLE III
SCALABILITY EVALUATION FOR DADC

Number of households 10 100 1000

Communication traffic (MB) 3.1 31 310
Computation burden (hours) 0.5 0.82 4.1

lem in a communication-restricted cloud-edge environment.
A salient feature of DADC is its two-step approximation of
the global value function. First, each HEMS’s individual critic
network maps its local information into a scalar value, which is
subsequently uploaded to the cloud. Second, the cloud estimate
the global value function with a feed-forward network that
takes these scalar values as inputs.

This framework brings three significant benefits. First, it
enhance user privacy protection. Second, it significantly re-
duces communication traffic and computational burden on the
cloud, thereby improving the training efficiency and scalabil-
ity. Third, despite the cloud’s access to limited information, the
decentralized policies learned by HEMSs achieve performance
comparable to that of DACC, arguably due to improved
implicit credit assignment.

The current DADC framework assumes fixed load types and
a fixed number of households during training, which restricts
its applicability. Future work will focus on adapting DADC
to general scenarios with varying load types and dynamic
household participation, enabling broader broader adoption of
cooperative residential load scheduling.

APPENDIX

The transition functions and cost functions used for simu-
lation are specified as follows.

FAC
i (T, T out, P, ϱ) = T + αi(T

out − T)− βiP + ϱ, (20)

where αi and βi are the the coefficients associated with the
thermal characteristics of corresponding room and AC, and ϱ
follows the uniform distribution U [−0.1, 0.1]. The arrival time
tai is a random variable with probability distribution U [ψi, ψi+
δ1], where ψi indicates the parking habit of the occupant in
household i, and δ1 is a shared parameter representing the
variance of arrival time. Given the arrival time tai , we assume
the departure time tdi ∼ U [tai + δ2, t

a
i + δ3], implying that the

dwell time of EV i ranges between [δ2, δ3]. The parameters
δ1, δ2 and δ3 are set to be 3, 9 and 12, respectively. Other
parameters are randomly sampled according to the range in
Table IV. The cost functions of DGs are specified as

TABLE IV
PARAMETER RANGES OF HOUSEHOLDS

Parameters T in
i T

in
i P

AC
i

Range [22, 24] [26, 28] [3, 4]

Parameters αi βi P
EV
i

Range [0.19, 0.21] [0.5, 0.7] [6, 10]

Parameters E
EV
i ηci ηdi

Range [40, 60] [0.90, 0.95] [0.90, 0.95]

G1(P) = λDG
1 P + λDG

2 P 2,

G2 (Pt, Pt−1) = λDG
3 |Pt − Pt−1|.

(21)

where λDG
1 , λDG

2 , λDG
3 denote the cost coefficients of DGs,

and are selected as 0.5, 0.0125 and 0.1, respectively.

REFERENCES

[1] “Electric power annual.” [Online]. Available: https://www.eia.gov/
electricity/annual/

[2] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang, Y. Zhang,
and T. Jiang, “Deep reinforcement learning for smart home energy
management,” IEEE IoT-J, vol. 7, no. 4, pp. 2751–2762, 2020.

[3] Q. Wei, D. Liu, and G. Shi, “A novel dual iterative q-learning method for
optimal battery management in smart residential environments,” IEEE
Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2509–2518,
2015.

[4] Q. Wei, G. Shi, R. Song, and Y. Liu, “Adaptive dynamic programming-
based optimal control scheme for energy storage systems with solar
renewable energy,” IEEE Transactions on Industrial Electronics, vol. 64,
no. 7, pp. 5468–5478, 2017.

[5] H. Shuai and H. He, “Online scheduling of a residential microgrid via
monte-carlo tree search and a learned model,” IEEE Transactions on
Smart Grid, vol. 12, no. 2, pp. 1073–1087, 2021.

[6] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[7] L. Yu, S. Qin, M. Zhang, C. Shen, T. Jiang, and X. Guan, “A review
of deep reinforcement learning for smart building energy management,”
IEEE IoT-J, pp. 1–1, 2021.

[8] C. Xu, S. Liu, C. Zhang, Y. Huang, Z. Lu, and L. Yang, “Multi-agent
reinforcement learning based distributed transmission in collaborative
cloud-edge systems,” IEEE TVT, vol. 70, no. 2, pp. 1658–1672, 2021.

[9] C. Zhang, S. R. Kuppannagari, C. Xiong, R. Kannan, and V. K. Prasanna,
“A cooperative multi-agent deep reinforcement learning framework for
real-time residential load scheduling,” in International Conference on
Internet of Things Design and Implementation, 2019, pp. 59–69.

[10] J. Lee, W. Wang, and D. Niyato, “Demand-side scheduling based on
multi-agent deep actor-critic learning for smart grids,” in 2020 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids, 2020, pp. 1–6.

[11] L. Yu, Y. Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, and X. Guan,
“Multi-agent deep reinforcement learning for hvac control in commercial
buildings,” IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 407–
419, 2021.

[12] X. Xu, Y. Jia, Y. Xu, Z. Xu, S. Chai, and C. S. Lai, “A multi-
agent reinforcement learning-based data-driven method for home energy
management,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp.
3201–3211, 2020.

[13] H.-M. Chung, S. Maharjan, Y. Zhang, and F. Eliassen, “Distributed deep
reinforcement learning for intelligent load scheduling in residential smart
grids,” IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp.
2752–2763, 2021.

[14] Y. Ye, D. Papadaskalopoulos, Q. Yuan, Y. Tang, and G. Strbac, “Multi-
agent deep reinforcement learning for coordinated energy trading and
flexibility services provision in local electricity markets,” IEEE Trans-
actions on Smart Grid, pp. 1–1, 2022.

[15] Z. Qin, D. Liu, H. Hua, and J. Cao, “Privacy preserving load control of
residential microgrid via deep reinforcement learning,” IEEE Transac-
tions on Smart Grid, pp. 1–1, 2021.

[16] European Commission, “General data protection regulation,” 2016.
[17] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,

J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395,
2017.

[18] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI, vol. 32, no. 1,
2018.

[19] Y. Du, H. Zandi, O. Kotevska, K. Kurte, J. Munk, K. Amasyali,
E. Mckee, and F. Li, “Intelligent multi-zone residential hvac control
strategy based on deep reinforcement learning,” Applied Energy, vol.
281, p. 116117, 2021.

[20] Y. Ye, D. Qiu, X. Wu, G. Strbac, and J. Ward, “Model-free real-time
autonomous control for a residential multi-energy system using deep
reinforcement learning,” IEEE Transactions on Smart Grid, vol. 11,
no. 4, pp. 3068–3082, 2020.

[21] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls et al.,
“Value-decomposition networks for cooperative multi-agent learning
based on team reward,” in AAMAS, 2018, pp. 2085–2087.

[22] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in ICML. PMLR, 2018, pp. 4295–
4304.

[23] P. Dai, W. Yu, H. Wang, and S. Baldi, “Distributed actor-critic algorithms
for multiagent reinforcement learning over directed graphs,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 34, no. 10,
pp. 7210–7221, 2023.

[24] M. Ahrarinouri, M. Rastegar, and A. R. Seifi, “Multiagent reinforcement
learning for energy management in residential buildings,” IEEE Trans-
actions on Industrial Informatics, vol. 17, no. 1, pp. 659–666, 2021.

[25] R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” NIPS, vol. 30, pp. 6379–6390, 2017.

[26] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” in ICML. PMLR, 2019, pp. 2961–2970.

[27] Y. Wang, B. Han, T. Wang, H. Dong, and C. Zhang, “Dop: Off-policy
multi-agent decomposed policy gradients,” in ICLR, 2020.

[28] Z.-W. Liu, G. Wei, M. Chi, X. Ye, and Y. Li, “Privacy-preserving
load scheduling in residential microgrids using multiagent reinforcement
learning,” IEEE Journal of Emerging and Selected Topics in Industrial
Electronics, vol. 5, no. 2, pp. 662–669, 2024.

[29] V. Khatri and C. V. Brown, “Designing data governance,” Communica-
tions of the ACM, vol. 53, no. 1, pp. 148–152, 2010.

[30] A. Mehmood, I. Natgunanathan, Y. Xiang, G. Hua, and S. Guo,
“Protection of big data privacy,” IEEE Access, vol. 4, pp. 1821–1834,
2016.

[31] N. Dong, M. Kampffmeyer, I. Voiculescu, and E. Xing, “Federated
partially supervised learning with limited decentralized medical images,”
IEEE Transactions on Medical Imaging, 2022.

[32] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 308–318.

[33] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-task
transfer learning: Model and practice with data-driven task allocation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 6,
pp. 1357–1371, 2019.

[34] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in iot edge computing,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 6, pp. 1133–1146,
2020.

[35] Z. Wang, W. Wu, and B. Zhang, “A fully distributed power dispatch
method for fast frequency recovery and minimal generation cost in
autonomous microgrids,” IEEE Transactions on Smart Grid, vol. 7,
no. 1, pp. 19–31, 2016.

[36] G. Chen, F. L. Lewis, E. N. Feng, and Y. Song, “Distributed optimal
active power control of multiple generation systems,” IEEE Transactions
on Industrial Electronics, vol. 62, no. 11, pp. 7079–7090, 2015.

[37] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[38] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[39] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[40] Pecan Street Database. [Online]. Available: http://www.pecanstreet.org/.
[41] NOAA Data. [Online]. Available: https://www.ncdc.noaa.gov/.

https://www.eia.gov/electricity/annual/
https://www.eia.gov/electricity/annual/

Zhaoming Qin (Graduate Student Member,
IEEE) received the B.Sc. degree in Automation
from Beihang University, Beijing, China, in 2019,
and the M.Sc. degree in control theories and
engineering from Tsinghua University, Beijing,
China, in 2022, respectively. He is currently pur-
suing the Ph.D. degree at the Automatic Control
Laboratory, EPFL, Lausanne, Switzerland. His
research focuses on the intersection of data-
driven control, learning and optimization.

Di Liu was born in Henan, China, in 1990. He
received the B.S degree in electrical engineer-
ing and management in 2013, the M.S degree
in electronic and communication engineering in
2015, and the Ph.D. degree in electrical engi-
neering in 2020, all from North China Electric
Power University, Beijing, China. From 2020 to
2024, he worked as a postdoctoral researcher
at Tsinghua University. He is currently an assis-
tant researcher at the Department of Electrical
Engineering, Tsinghua University. His research

interests include demand side management, power system stability
control, and energy internet.

Zhefan Wang received the Bachelor’s degree in
computer science and technology from Liaoning
University, Liaoning, China, in 2024. She is pur-
suing a Ph.D. degree in electronic information
at Fudan University, Shanghai, China. Her re-
search interests include AI for science and large
language models.

Nanqing Dong received the master’s degree
from the Department of Statistical Science, Cor-
nell University, Ithaca, NY, USA, in 2017, and the
Ph.D. degree from the Department of Computer
Science, University of Oxford, Oxford, UK, in
2023. He is currently an Associate Professor
at the Shanghai Artificial Intelligence Laboratory
and a Doctoral Supervisor at the Shanghai Inno-
vation Institute. He visited the Machine Learning
Department, Carnegie Mellon University, Pitts-
burgh, PA, USA, from 2017 to 2019. He is a

member of IEEE and CAASS, and a special committee member of CCF
and CAAI. His research interests include machine learning, computer
vision, optimization, and AI for science.

Junwei Cao (Senior Member, IEEE) received
the bachelor’s and master’s degrees in control
theories and engineering from Tsinghua Univer-
sity, Beijing, China, in 1998 and 1996, respec-
tively, and the Ph.D. degree in computer science
from the University of Warwick, Coventry, U.K.,
in 2001.

He is currently a Professor of Beijing National
Research Center for Information Science and
Technology, Tsinghua University. Prior to joining
Tsinghua University in 2006, he was a Research

Scientist with MIT LIGO Laboratory and NEC Laboratories Europe
for about five years. He has published over 400 papers and cited
by international scholars for over 120 000 times. He has authored or
edited ten books. His research is focused on distributed computing
technologies and energy/power applications. He is a Senior Member of
the IEEE Computer Society and a member of the ACM and CCF.

	Introduction
	Literature Review
	Multi-Agent Reinforcement Learning
	Data Governance
	Edge artificial intelligence

	Contributions

	Problem Formulation
	Cloud-Edge Environment
	System Model
	Objective Function
	Dec-POMDP Formulation
	Dec-POMDP
	Global state and local observations
	Actions
	Reward

	MARL Framework in Cloud-Edge Environment under Data Governance
	Architecture
	Decentralized Actors
	Distributed Critics
	Inner Structure

	Distributed Training

	Experiments
	Experiment Setup and Implementation
	Environment
	Network Architecture
	Baseline Frameworks
	Shared Hyperparameters

	Algorithm performance
	Effect of Implicit Credit Assignment
	Effect of Load Scheduling
	Scalability Evaluation

	Conclusion
	References
	Biographies
	Zhaoming Qin
	Di Liu
	Zhefan Wang
	Nanqing Dong
	Junwei Cao

