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Abstract—In this paper, we proposed an improved NSGA-II 

algorithm to optimize the operation performance of Energy 
Internet. We designed the corresponding gene structure and 
related parameters according to the Energy Internet operation 
demand. Then, to increase the proportional of feasible gene 
samples, we designed a data sequence compensate function and 
adopted random compensating with different probability 
thresholds, which can further increase the performance compared 
to all samples compensating. Through this means, we got the 
optimal result with better operation cost, which verified the 
advanced performance of this improved algorithm. In the further 
research, we will try more system optimal indexes and get better 
results based on the progress of newest NSGA liked algorithms. 
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I. INTRODUCTION 

Energy Internet is a new type of energy system which 
utilizes many forms of energy, such as wind, photovoltaic, fossil 
and hydrogen [1] and so on. It applies automatic management, 
multi-end collaboration and multi-energy complement to realize 
high energy utilizing efficiency, low operation cost and low 
carbon emission. At the same time, many other extendable 
targets can be considered, such as high robust characters, long-
life cycle, low fault time in system operation, etc. [2] 

But as many targets can’t be realized simultaneously, the 
system needs to reach a balance state with these targets, which 
should make simultaneous consideration of these target factors, 
so multi-object optimizing can be an effect method to realize 
performance optimal balance. It has the demands of high 
number of candidate samples, large evolution space and 
equilibrium sample density and high global results convergence, 
so it can find the proper results quickly and efficiently. 

Multi-object optimize can be realized through finding pareto 
optimal samples in NSGA (Non-dominated Sorting Genetic 
Algorithms) series algorithms, which is based on genetic 
algorithm to fulfill the task. Through genetic candidate pool, 
NSGA can record optimal solutions and update the results 
iteratively. So, through many iterations, NSGA can obtain 
optimal results gradually and keep the sample density evenly at 
the same time. 

NSGA has many types of evolutions, such as NSGA-I, 
which sets up the foundations of multi-target optimization and 
realizes evenly sample density through sharing distance [3], and 

has the characters of high computing burden, NSGA-II is the 
following improvement of NSGA-I [4-7], which utilizes 
neighborhood distance to select proper samples through 
optimizing sample node distribution densities. Due to its high-
performance results, it becomes one of the most popular multi-
target algorithms, which can be further used in target position 
search [8], Hydro-Photovoltaic complementing [9], wireless 
charging [10], motor optimal design [11] ， car trajectory 
planning [12],etc. Another improvement of NSGA is NSGA-III 
[13,14], which uses reference points based on optimized 
space(angular) distribution, and is especially suited for large 
dimensional target optimization, but its performance needs to be 
further verified comparing to NSGA-II [15].  

In this paper, we use the NSGA-II to realize multi-objects 
optimization, as it has moderate computing task and is suitable 
for not very large data sample dimensions. 

Through evolutions, the NSGA experienced many 
innovations, such as: 

a) Founding the elite set [16], which stores not only the 
selected valid samples but also invalid ones with better index 
value or previously abandoned valid ones. These samples will 
be used in gene evolution. Through this means, the search space 
can be effectively extended. 

b) Adding single optimal samples (extreme samples or 
complement samples) [17], so the initial data sample distribution 
can be improved. 

c) Uniform/normalize the performance indexes, so fairly 
comparison can be realized [18]. 

d) Adding chaotic disturbance in gene mutation, doing so 
to increase the search space [19]. 

e) Adding other data handling algorithms, such as k-
means [20], information entropy [21] and Taguchi method [22] 
to increase the gene evolution performance. 

f) Select the elite samples through angle value [23]. 

g) Realize target decomposition for pareto optimal set 
[24].  

Through above innovations, NSGA series algorithm can be 
improved for some specified scenes, and its applicability for 
general scenes is still to be explored. 



II. SYSTEM DESIGNING 

Here we use improved NSGA II algorithm to optimize the 
EI operation performance with multi-object optimization 
scheme using the concept of pareto optimal set. It includes 
following function modules. 

A. Overall Targets Design 

The simulation time is for one day operation, with the data 
periods of 2 hours, which include total 12*2 charge and 
discharge sample points in one gene sample.  

The energy internet has the RES generation equipment such 
as distributed PV and wind. The energy internet can buy and sell 
the power with main grid, at the same time it can storage and 
emit power through energy storage equipment. The energy 
storage can help reduce carbon emission in their whole life cycle, 
which ensures the system’s economic and environment 
protection effect. 

The program has three operation targets, e.g., lowering the 
operation cost, maximizing the system revenue, and lowering 
the carbon emission. In the designed system, the wind energy 
profile, the photovoltaic (PV) profile and the load profile is kept 
invariance, the only changeable factor is the charge and 
discharge rate of storage equipment, grid power exchange can 
be varied based on this factor. 

B. Specific Design Scheme 

The detailed operation flow is shown as in Fig. 1, the ellipses 
represent the improved components. First, we need to design the 
gene structure according to the need of EI optimization, then we 
will generate the initial sample in EI, and compensate the sample 
to more fulfill the operation constraints. Then we will iteratively 
take the evolution for generating candidate gene, which also 
include using the compensate function to increase the 
proportional of valid samples. And probability compensating is 
executed in the compensate function to keep certain number of 
no-valid samples. Then we will find a robust result from the 
results of improved NSAG_II using the combined weight max-
min selection algorithm (with max count of minimum weight 
combined value). Then the result can be used in EI operation and 
control proceedings. 

C. Gene Variable Structure Design 

As the experiment contains 12 time periods (every 2 hours 
in one day), and the gene information should include the charge 
amount and discharge amount for every time instant. So there 
contains 24 original gene value (2*12) for every sample group, 
which can be represented as 
[𝑐ℎ𝑎𝑟𝑔𝑒 1, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 1 … , 𝑐ℎ𝑎𝑟𝑔𝑒 12, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 12] , with 
the dimension of 1*24. And we use the reshape function to 
change the dimensions of every gene value sequence in data 
handling when needed. 

There is some additional information that should be 
appended to original gene value in programming, such as the 
rank of pareto optimal samples, its neighbor crowding distance 
and the index value of invalid samples, which can be used in 
pareto sorting and gene sample selection, in the form of 
[charge/discharge rate, other factors]. 
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Fig. 1. EI optimization operation flow 

III. SYSTEM MODELIING 

A. Parameter Modeling 

The operation cost includes PV operation cost, wind 
operation cost, grid cost (set as zero), energy storage 
equipment’s charge cost and its discharge cost. 

𝑓𝑎𝑐𝑡𝑜𝑟1 = 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡(1) ∗ 𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
+ 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡(2)
∗ 𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
+ 𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
∗ 𝑚𝑎𝑥(𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙, 0) + 𝑏𝑢𝑦_𝑐𝑜𝑠𝑡(4)
∗ (𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙 + 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙); 

The system revenue includes the electrical sell revenue, this 
value will be minus transformed to take related targets with 
minimum value as its optimal index. 

𝑠𝑒𝑙𝑙_𝑙𝑜𝑎𝑑 = 𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
+ 𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
− 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙 + 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙
− 𝑙𝑜𝑎𝑑(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟); 

𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙 = −𝑠𝑒𝑙𝑙_𝑙𝑜𝑎𝑑; 

𝑓𝑎𝑐𝑡𝑜𝑟2 = 𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒(ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
∗ 𝑚𝑎𝑥(−𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙, 0); 

The carbon cost includes the wind carbon emission cost, the 
PV carbon emission cost, the grid carbon emission cost and 
energy storage charge and discharge related carbon emission 
cost. 



𝑓𝑎𝑐𝑡𝑜𝑟3 = 𝑐𝑎𝑟𝑏𝑜𝑛_𝑐𝑜𝑠𝑡(1) ∗ 𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
+ 𝑐𝑎𝑟𝑏𝑜𝑛_𝑐𝑜𝑠𝑡(2)
∗ 𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒(1, ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟)
+ 𝑐𝑎𝑟𝑏𝑜𝑛_𝑐𝑜𝑠𝑡(3) ∗ 𝑚𝑎𝑥(𝑔𝑟𝑖𝑑_𝑟𝑒𝑎𝑙, 0)
+ 𝑐𝑎𝑟𝑏𝑜𝑛_𝑐𝑜𝑠𝑡(4) ∗ (𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙
+ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙); 

In the power exchange with grid and energy internet, for the 
revenue purpose of main grid, the sell price to the grid should be 
smaller than the buy price from the grid. Here we use the 
proportional price, such as  𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 0.75 ∗ 𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒 , 
which may affect the system revenue. 

The charge amount of energy storage equipment can be 
represented as below equations, which consider both the charge 
ratio and discharge ratio (set as 0.95): 

𝑓𝑜𝑟 𝑝 = 1: 11 

    𝑐𝑎𝑝2 = 𝑐𝑎𝑝2 + 𝑟𝑜𝑢𝑛𝑑(𝑐ℎ𝑎𝑟𝑔𝑒1(𝑝, 1) ∗ 0.95)
− 𝑟𝑜𝑢𝑛𝑑(𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1(𝑝, 1)/0.95); 

𝑒𝑛𝑑 

B. System Constraints Modeling 

The constraints of power charge and discharge can be 
expressed as: 

𝑖𝑓 
𝑑𝑎𝑡𝑎_𝑙𝑖𝑛𝑒(1)>255||𝑑𝑎𝑡𝑎_𝑙𝑖𝑛𝑒(2)>255||𝑑𝑎𝑡𝑎_𝑙𝑖𝑛𝑒(1)<0||𝑑𝑎𝑡𝑎_
𝑙𝑖𝑛𝑒(2)<0 

            𝑓𝑙𝑎𝑔=0; 

𝑒𝑛𝑑 

𝑖𝑓  ℎ𝑜𝑢𝑟_𝑛𝑢𝑚𝑏𝑒𝑟==12 

            𝑖𝑓 𝑎𝑏𝑠(𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝_1)>1%𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑟𝑎𝑡𝑒/255; 

                𝑓𝑙𝑎𝑔=0; 

            𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝑖𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝_1<0||𝑏𝑎𝑡𝑡𝑒𝑟𝑦_𝑐𝑎𝑝_1>255∗5 

            𝑓𝑙𝑎𝑔=0; 

𝑒𝑛𝑑 

𝑖𝑓 𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙∗𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒_𝑟𝑒𝑎𝑙~=0 

            𝑓𝑙𝑎𝑔=0; 

𝑒𝑛𝑑 

The first constraint ensures that the charge and discharge rate 
at every time instant should fulfill itself constraint of the storage 
equipment. 

The second constraint ensures that the charge amount should 
become zero (or reach the minimum value) at the final time point 
of current cycle. This is an important constraint which makes 
energy dispatch more operable, but it greatly increases the 
algorithm’s complexity and make energy optimal dispatch 
harder with less qualified samples if not applying compensate 
function. 

The third constraint ensures that the charge amount of energy 
storage equipment is kept in the proper range. 

The fourth constraint ensures that the charge and discharge 
amount can’t be larger than zero simultaneously (either one for 
zero). 

IV. PROGRAMMING IMPROVEMENTS 

A. Adjusting Programming 

We first generate the candidate samples randomly, then we 
adjust every gene group in the positive and reverse order to make 
one day samples fulfill all above constraints. In this procedure, 
we should keep every charge and discharge rate for every time 
instant in the range of [0,255], and when one rate is decreased to 
zero/increased to maximum, we should consider 
increasing/decreasing the other rate. If the energy is still 
surpassed or deficient, we should consider its previous or 
following time node according to the iterative order. This task is 
fulfilled using the compensate function, its execution includes 
two iterations, i.e. positive iteration and reverse iterations. In 
every step of charge and discharge compensation, we should 
consider the operation efficiency of charge rate and discharge 
rate, which makes the total charge amount is always larger than 
the discharge amount. 

The state of the energy storage equipment can be calculated 
as: 

𝑐𝑎𝑝 = 𝑐𝑎𝑝 − 𝑟𝑜𝑢𝑛𝑑((𝑐ℎ𝑎𝑟𝑔𝑒(𝑖, 1) − 𝑐ℎ𝑎𝑟𝑔𝑒1(𝑖, 1))
∗ 0.95) + 𝑟𝑜𝑢𝑛𝑑((𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑖, 1)
− 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1(𝑖, 1))/0.95); 

Where cap represents the capacity of energy storage 
equipment, and charge(i,1) and discharge(i,1) represent the 
charge and discharge rate before adjusting actions, and 
charge1(i,1) and discharge1(i,1) represent the charge and 
discharge rate after adjusting actions. When there is no 
modification of charge and discharge factors, the value cap is 
unchanged. 

When we finish this job, we calculate the accumulated 
charge amount and discharge amount in positive time order and 
get the discharge amount of the final time instant, which must 
larger or equal than zero. And at the end of compensating 
proceeding, if these adjusted data vectors can’t fulfill all the 
constraints, the gene will be labeled unaccepted(false). But by 
using our proposed compensate function, the constraints will not 
be break down after compensating. 

B. Random Compensating 

When running this algorithm, we first apply the compensate 
function for every generated charge and discharge sequence, this 
will ensure that all of the sample sequences input into this 
algorithm satisfy the charge and discharge constraints (here we 
call it the positive sequence, otherwise negative sequence). But 
due to the lack of negative sequences, the search range can’t be 
diversely extended, and the finally optimal set can’t be globally 
optimized. So, we use a trick for execute the compensate 
function, i.e. probability compensating. We set a threshold 𝑝, 
and choose a random value as (𝑟𝑎𝑛𝑑(1,1)), if it is less than 
threshold (𝑟𝑎𝑛𝑑(1,1) < 𝑝) , the compensate function will be 
executed, otherwise the data sequence keeps invariant. Through 



this means, the number of negative sequences can be ensured, 
and the search space is effectively extended than just 
considering positive sequences, so the performance of NSGA-II 
could be promoted compared to probability value 1, which gives 
a less performance index. This will be verified in following 
sections. 

C. Sample Filtering 

In this algorithm we filter the gene groups with the same 
gene samples and the gene with almost all zero samples. The 
almost zero samples occupy a large data space, and are not 
valuable to the final results, which should be omitted. 

𝑐ℎ𝑟𝑜𝑚 = [𝑐ℎ𝑟𝑜𝑚𝑒𝑠, 𝑢𝑛𝑖𝑡_𝑖𝑛𝑑𝑒𝑥, 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒]; 

𝑐ℎ𝑟𝑜𝑚 = 𝑢𝑛𝑖𝑞𝑢𝑒(𝑐ℎ𝑟𝑜𝑚,ᇱ 𝑟𝑜𝑤𝑠ᇱ); 

𝐶ℎ𝑟𝑜𝑚 = 𝑑𝑒𝑙𝑒𝑡𝑒_𝑧𝑒𝑟𝑜_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑐ℎ𝑟𝑜𝑚); 

𝑐ℎ𝑟𝑜𝑚𝑒𝑠 = 𝑐ℎ𝑟𝑜𝑚(: ,1: 24); 

𝑢𝑛𝑖𝑡_𝑖𝑛𝑑𝑒𝑥 = 𝑐ℎ𝑟𝑜𝑚(: ,25: 27); 

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑐ℎ𝑟𝑜𝑚(: ,28); 

Through this means we calculate the robust result of NSGA-
II. 

D. Target Sample Selection 

For three fitness value, we first normalized the value, such 
as:  

    𝑚𝑒𝑎𝑛_𝑣 = 𝑚𝑒𝑎𝑛(𝑃𝑜𝑝𝑜𝑏𝑗(: , 𝑖)); 

    𝑣𝑎𝑟_𝑣 = 𝑣𝑎𝑟(𝑃𝑜𝑝𝑜𝑏𝑗(: , 𝑖)); 

    𝑖𝑛𝑑𝑒𝑥(: , 𝑖) = (𝑃𝑜𝑝𝑜𝑏𝑗(: , 𝑖)
− 𝑚𝑒𝑎𝑛_𝑣)/𝑚𝑎𝑥 (𝑠𝑞𝑟𝑡(𝑣𝑎𝑟_𝑣),0.01); 

Then we set the 3-dimensional weight w1, w2, w3, which is 
the multiplying step of 0.05 and should be nonzero, and the 
weight sum equals 1. We then get the weighted average value 
by f1*w1+f2*w2+f3*w3. As the targets are to minimize the 
target indexes, we calculate the min value for every weight 
combination and increase the corresponding count number by 
one at a time if corresponding value is minimum within this 
weight combination. At the end of iteration, we choose the 
sample with max count number of the corresponding min value 
or the minimum value of one special index as the optimal result. 
If there are more than one max count numbers, we choose the 
value with min cost as the final value. 

V. EXPERIMENT RESULTS 

A. Parameter Settings: 

The buy cost profile is set as (in turn for PV, wind, grid, 
charge and discharge): 

𝑏𝑢𝑦_𝑐𝑜𝑠𝑡 = [0.3,0.35,0,0.23,0.23];  

The carbon cost profile is set as (in turn for PV, wind, grid, 
charge and discharge): 

𝑐𝑎𝑟𝑏𝑜𝑛_𝑐𝑜𝑠𝑡 = [0.04,0.011,0.58,0.03,0.03]; 

The buy price and sell price profile is set as (one for two 
hours in one day): 

𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒
= [0.2259,0.2259,0.2259,0.2259,0.9647,1.0647,0.5568, 

0.5568,0.5568,0.9647,0.9647,0.5568]; 

𝑠𝑒𝑙𝑙_𝑝𝑟𝑖𝑐𝑒 = 𝑏𝑢𝑦_𝑝𝑟𝑖𝑐𝑒 ∗ 0.75; 

The PV profile, wind profile and load profile are set as below, 
with interval of two hours: 

𝑝𝑣_𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 1 ∗ [0,0,0,0.25,0.5,0.62,0.8,0.6,0.23,0.03,0,0]
∗ 1000; 

𝑤𝑖𝑛𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒
= 1 ∗ [0.75,0.44,0.435,0.43,0.41,0.38,0.372,0.4,0.39,0.38, 

0.388,0.43] ∗ 1000; 

𝑙𝑜𝑎𝑑_𝑝𝑟𝑜𝑓𝑖𝑙𝑒
= 2 ∗ [0.6,0.33,0.32,0.37,0.44,0.45,0.455,0.43,0.44,0.48, 

0.47,0.42] ∗ 1000; 

Above raw PV vectors are fetched from [25], and the wind 
and load profile raw data are obtained through a web figure, the 
multiply factors are adjusted as needed. 

B. Result analyse 

a) Result analyse I 

The best results for different probability thresholds are 
shown in below table, here we choose the system cost value as 
the final evaluation index for performance comparison, so other 
indexes may not be optimal at the same time: 

TABLE I. PERFORMANCE COMPARISON WITH DIFFERENT 
PROBABILITY THRESHOLDS 

*10^3 cost Revenue(minus) Carbon 
emission 

Count 
number 

P=1 4.5715 -0.2872 1.8614 66 
P=0.7 4.5604 -0.2493 1.8050 49 
P=0.5 4.4149 -0.3975 1.9736 92 
P=0.3 4.2501 -0.02695 1.8161 47 
P=0.1 4.4787 -0.3783 1.9551 21 

Traditional 
P=0 

4.5634 -0.1879 1.7692 64 

 

From above table we can see, when the probability decreases 
from 1 to 0.3, the cost value monotonously decreases, so its 
performance increases accordingly, and reach the peak value at 
P=0.3, while the performance of P=0.1 is also better than the 
situation of P=1 (all samples compensating). From related 
results we can also see, that the data sample with the least cost 
value also has the most count number in every iteration round, 
which shows the potential performance of weight combination 
in optimal sample selection. 

The performance of traditional algorithm is better than that 
of P=1, but by applying random compensating, all the results of 
our proposed algorithm is better than that of traditional 
algorithm. And the superior performance of traditional 
algorithm compared to that of P=1 may be due to `modified 
random sampling proceeding in the initial forming samples, 
which will generate more positive samples at the initial step. 



This makes traditional algorithm comparable but a little poor 
performance with random compensating. 

b) Result analyse II 

While the background parameter rarely changes, the curves 
of charge and discharge are diversly distributed due to rand gene 
generating function adopted in this algorithm, one typical result 
can be seen in below figure. 

Fig. 2 shows the result of battery charge and discharge 
amount, and the curve of PV, wind, load and grid exchange in 
one day are also plotted. When grid exchange is more than zero, 
it will buy energy from the grid, when it is less than zero, it will 
sell energy to the grid. 

Form the curve we can see, in the start hours, storage 
equipment begins to charge the energy, which has low electric 
price at this time instant, so the charge cost can be low, and the 
charge amount is high. Then the charge amount of storage 
equipment begins to fluctuate according to the demand of load 
and PV and wind energy output, which should keep the energy 
balance of the whole system while achieve economics target. 
From time points 8, the storage equipment begins to discharge 
until it reaches zero at the end of simulation time instant. 

 
Fig. 2.  Simulation results for P=0.3 

From above Fig. 2, we can also see that positive grid 
exchange peaks occur at the start time point and near end time, 
and at point 6 (am 12:00), negative grid exchange peak occurs. 
From the global view, the profile of grid exchange roughly 
correlates with the trend of battery charge and discharge curve 
in the middle sections of simulation. 

From above figure we can get that, through charge and 
discharge at proper time point using storage equipment, we can 
efficiently lower the operation cost and maximize the system 
revenue based on time-of-use electricity price and cut down the 
carbon emission at the same time. And more rational electricity 
price may further increase the revenue of EI. 

c) Result analyse III 

Here we compare the optimal set distribution for different 
thresholds at the final time instant as shown in below Fig. 3 and 
Fig. 4: 

 
Fig. 3. Optimal set distribution without random compensating (traditional 
algorithm) 

From above figure we can see, when P=0.3, which has the 
best performance, its nodes number of optimal pareto set are the 
largest comparing to other probability threshold, while P=1 has 
the least optimal pareto number, which have the worst 
performance accordingly. Traditional algorithm also has many 
optimal pareto samples, but its performance is second worst, 
which may due to that it doesn’t use random compensating 
function, so it can’t evolve as fast as other situations in following 
gene evolutions. 

P=1

P=0.3
P=0.1

P=0.3

P=0.5 P=0.7

 
Fig. 4. Optimal set distribution with random compensating 

VI. CONCLUSIONS 

In this paper, we proposed an improved NSGA-II algorithm 
to promote the operation performance of Energy Internet. 
Through this algorithm, we realize the targets of minimum cost, 
maximize system revenue and minimize carbon emission in one 
day’s simulation in EI expressed by optimal pareto set, which 



shows the potential advantages of gene evolution algorithm for 
solving the EI optimal multi-parameter problem. Though using 
compensate function and random compensating, the system’s 
performance can be further improved, and verified through 
considering one specific performance index. In the further 
research, we can search more optimal targets (performance 
indexes), and make the system more robust and effective 
through improved optimal designs. 
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