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Abstract—With the developing of Energy Internet (EI), its load 
forecast becomes more and more important and necessary. 
Although the load of EI has some temporal periodic features, its 
inherent uncertainties in different types of loads make accurate 
prediction more difficult. Sometimes even the typical neural 
network may produce apparent load forecast error and take non-
negligible computing time. In EI load forecast with one step 
further real-time prediction, we apply the threshold factor of 
block characters into dimensions determination of ELM’s 
(Extreme Learning Machine) training model size. Through 
corresponding simulations, the proposed algorithm shows more 
accurate results than ELM used alone, and also than ESN (Echo 
State Network), which exhibits large application potentials.  

Keywords—load forecast, Energy Internet, threshold factor, 
block characters, ELM 

I. INTRODUCTION  

Through the smart using of related data in EI (Energy 
Internet) operation, its energy utilizing efficiencies can be 
largely promoted by adopting cyber-energy infrastructure 
integration in our previous studies [1-3], where load forecast 
becomes its basic and fundament function for the high effective 
operations of infrastructure integration. By using AI and 
machine learning related techniques [4-6], this function will ease 
the management and operation of EI and can be extended to 
other industries [7,8]. 

As in EI operation, due to its operation environment, the 
sampled data usually have complex operation characters, such 
as quasi-temporal period arises with random disturbs. Its 
complex is mainly due to multi-source energy generation such 
as wind, PV etc. renewable energy source [9,10] and multi-type 
consuming customers controlled by micro grid  operation [11] 
and demand side management [12]. In this situation, even some 
high complex neural networks may not afford the load forecast 
task timely. To improve its performance, new neural network 
model maybe needed. 

Under this working condition, many load forecast algorithms 
are proposed [13], which often utilize the potential temporal 
cycle and working day type characters, and typically adopt 
neural network like MLP (Multi-Layer Perception)[14-16] or 
other advanced machine learning algorithms [17-22]. But the 
neural node number in hidden layer are always fixed in one 

simulation, and the parameter configurations are modified 
though trial and error, its adaptive can’t be ensured.  

Current load forecast in EI mainly focuses on short term 
forecast [20-24]. This type of algorithm can be used in fault 
diagnosis, instant dispatch and system recovery, whose 
prediction accuracy largely influences the algorithm’s robust 
and intelligent characters. 

To alleviate the complexity and running delay of EI load 
forecast, ELM [25] (Extreme Learning Machine) liked neural 
network are introduced, which have characters like significantly 
reducing the running time delay and keeping comparable 
operation performance with those of complex networks. So, the 
introduction of block characters into adaptively deciding of 
ELM‘s training model size in every simulation step becomes an 
effective means, which can stir more innovations in this research 
domain. 

II. PROPOSED ALGORITHMS 

We utilizing different block characters to realize one-step 
further real time load forecast in EI system. The proceeding of 
this algorithm is shown as follows in Fig.1, and it includes 
following modules. 

 
Fig. 1. The proceeding of this algorithm 

A. Data Sampling Module 

Before simulation, we need to get the history load data. Here 
we adopt a yearly load record for one industry park, and the 
original data sample frequency is one minute per sample. To 
reduce the algorithm’s complexity, we get the mean value of 
data samples for every 15 minutes, so we can obtain 96 samples 
in one day, and total 35136 samples in one year (366 days). From 



Fig.2 we can see, the load data have different characters at 
different time positions, which also have many exception data 
points (peak value or valley value) randomly distributed, which 
makes the traditional algorithms like neural network more 
hardly affordable for high precision forecasting demand due to 
irregular data distribution. 

 
Fig. 2. load data in one year 

B. Data Processing Module 

a) Start index calculating module 

We divide the load data into two sections: data sequence in 
training section and testing section. As the day sample number 
is 96, we fetch 96 last samples from the training section used as 
the test data sequence. And for every fetched data sample M in 
96 samples， we calculate its corresponding start index (also 

named as character index) as 𝑁 = 𝑀 − 𝑓𝑙𝑜𝑜𝑟 ቀ
ெ

ଽ଺
ቁ ∗ 96 +

1,then we reshape the data sequence with index segments N:M 

into the data array with size  ቀ
ெିேାଵ

ଽ଺
, 96ቁ  (row order first), 

which is notated as the preprocessing block 𝐿, and it’s the source 
pool of every training data sequence. 

b) Window size calculating module 

For every block with its last data sample （from left to right, 
from top to bottom） located at the bottom right corner of block 
𝐿 (so its size varies), we calculate related block characters for 
every traversing block (𝐿((𝑀 − 𝑁 + 1)/96 − 𝑚1 + 1: (𝑀 −
𝑁 + 1)/96,96 − 𝑛1 + 1: 96)) , (characters may be the 
combined expressions of block mean value, standard deviation 
value and the block entropy, such as 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟, 𝑚𝑒𝑎𝑛 +
3 ∗ √𝑣𝑎𝑟 , 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦,  and so on), whose 
corresponding value is stored in 𝑏𝑙𝑜𝑐𝑘_𝑒 with the coordination 
index (𝑚1, 𝑛1) which represents its training window size, then 
we choose the coordination of data element in 𝑏𝑙𝑜𝑐𝑘_𝑒 with the 
minimum block element value which is bigger than the defined 
threshold calculated with certain factor, it can be expressed as: 

𝑚𝑎𝑥11 = max (𝑚𝑎𝑥(𝑏𝑙𝑜𝑐𝑘_𝑒)); 

𝑚𝑖𝑛11 = 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑏𝑙𝑜𝑐𝑘_𝑒)); 

𝑏𝑙𝑜𝑐𝑘_𝑓 = 𝑚𝑖𝑛 (𝑚𝑖𝑛 (𝑏𝑙𝑜𝑐𝑘_𝑒(𝑏𝑙𝑜𝑐𝑘_𝑒
≥ 𝑘1 ∗ (𝑚𝑎𝑥11 − 𝑚𝑖𝑛11) + 𝑚𝑖𝑛11))); 

[𝑙𝑖𝑛𝑒1, 𝑐𝑜𝑙1] = 𝑓𝑖𝑛𝑑(𝑏𝑙𝑜𝑐𝑘_𝑒 == 𝑏𝑙𝑜𝑐𝑘_𝑓); 

𝑙𝑖𝑛𝑒(𝑚) = 𝑙𝑖𝑛𝑒1(1); 

𝑐𝑜𝑙(𝑚) = 𝑐𝑜𝑙1(1); 

Where k1 is the threshold factor, which is between 0 and 1 
(lower or equal than 0.2 in this experiment), and the coordination 
of selected element, i.e. ൫𝑙𝑖𝑛𝑒(𝑚), 𝑐𝑜𝑙(𝑚)൯, is chosen as the 
parameters of sliding window size with the elements of block 
𝐿((𝑀 − 𝑁 + 1)/96 − 𝑙𝑖𝑛𝑒(𝑚) + 1: (𝑀 − 𝑁 + 1)/96,96 −
𝑐𝑜𝑙(𝑚) + 1: 96). 

c) ELM training module 

For every test sample with original location 𝑚2 ,We 
calculated its related start index 𝑛2 = 𝑚2 − 𝑓𝑙𝑜𝑜𝑟(𝑚2/96) ∗
96 + 1, and took (𝑙𝑖𝑛𝑒(𝑛2), 𝑐𝑜𝑙(𝑛2)) calculated in above step 
as its corresponding sliding window size. 

We use the sample window with size (𝑙𝑖𝑛𝑒(𝑛2), 𝑐𝑜𝑙(𝑛2)) 
traversed along the bottom line and right column of related 
reshaped matrix obtained from the data sequence (except the 
corner sample), and reshape the data array obtained in the 
window into one row of matrix 𝐻  with size (1, 𝑙𝑖𝑛𝑒(𝑛2) ∗
𝑐𝑜𝑙(𝑛2))(row order first) ,which will form matrix 𝐻 with size 
(𝑛, 𝑙𝑖𝑛𝑒(𝑛2) ∗ 𝑐𝑜𝑙(𝑛2)) . After traversed all samples, 𝐻  is 
transposed, then the bottom line of 𝐻 is used as neural network 
output label, and other lines of 𝐻 as neural network input data 
set. 

We obtain the prediction input data block with a window size 
(𝑙𝑖𝑛𝑒(𝑛2), 𝑐𝑜𝑙(𝑛2)) within transformed array 𝐿 formed for this 
test sample, where the end location of the obtained block, i.e. its 
right bottom corner, is coincide with that of array 𝐿. And then, 
the block is reshaped which transforming into a vector with 
size(1, 𝑙𝑖𝑛𝑒(𝑛2) ∗ 𝑐𝑜𝑙(𝑛2)), then this vector is also transposed. 
The last element of this vector is used as the real test data （for 
comparison), while other elements are used as neural network’s 
prediction input data. 

We input the output label and input data set along with 
prediction input data into ELM model for training and testing, 
which can predict the target value at the time location of real test 
data. 

C. Performance Evaluation Module 

We predict the load value with different parameter 
configurations, and evaluate the corresponding performance 
index as: 

𝑚𝑠𝑒1 = 𝑠𝑞𝑟𝑡(𝑠𝑢𝑚((𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑖𝑛𝑝𝑢𝑡_1).∗ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡
− 𝑖𝑛𝑝𝑢𝑡_1))/𝑡𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡)/𝑚𝑎𝑥_𝑖𝑛 

where predict and  𝑖𝑛𝑝𝑢𝑡_1  represents predicted load data 
sequence and real load data sequence,  𝑡𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡  represents 
the element number of the two sequences (size 200), 𝑚𝑎𝑥_𝑖𝑛 
represents the max load data value. The less value of mse1, the 
more accurate prediction of the result. 



III. SIMUATION RESULTS 

A. Software Configuration 

The simulation is running in MatLab 2014a and windows 10., 
with hardware setting of Intel(R) Core(TM) i5-8250U CPU @ 
1.60GHz, 1.80 GHz. 

B. Programming Length Setting 

We estimate the load using the load data sequence just lying 
before results’ location, which can be seen as a real time 
estimation and will have better precision performance than other 
time scales, the predicted load number is set as 200, and the 
whole data length is 35136, and the training data size is set as 
34036. 

C. Result analyse 

We choose 6 block characters expressions as: 𝑚𝑒𝑎𝑛 + 3 ∗

√𝑣𝑎𝑟, 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟, 𝑚𝑒𝑎𝑛 + 0.5 ∗ √𝑣𝑎𝑟, 𝑚𝑒𝑎𝑛 − 0.5 ∗

√𝑣𝑎𝑟, 𝑚𝑒𝑎𝑛 + 3 ∗ √𝑣𝑎𝑟 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ， 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟 +
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 , where mean represents the mean value of selected 
block, var represents the variance of this block, and entropy 
represents the entropy value of this block, (equal interval 
division, with 20 levels). Then we choose the threshold factor 
k1 as 0.2, 0.1, 0.05, 0.02, 0.01, 0 for every block character. 

a) Result analyse I 

Here below table shows the results of above character 
expressions, whose best result as the minimum value of every 
line is notated with bold figures. 

TABLE I.  THE PERFORMANCE OF DIFFERENT CHARACTER 
EXPRESSIONS 

𝑘1 

𝑚𝑠𝑒 

0.2 0.1 0.05 0.02 0.01 0 

𝑚𝑒𝑎𝑛
− 0.5

∗ √𝑣𝑎𝑟 

0.0688 0.0695 0.0639 0.0645 0.0665 0.0635 

𝑚𝑒𝑎𝑛 + 3

∗ √𝑣𝑎𝑟
− 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 

0.0615 0.0604 0.0575 0.0547 0.0579 0.0553 

𝑚𝑒𝑎𝑛 + 3

∗ √𝑣𝑎𝑟 
0.0568 0.0455 0.0413 0.0434 0.042 0.0393 

𝑚𝑒𝑎𝑛

+ √𝑣𝑎𝑟 
0.0634 0.0527 0.0437 0.0439 0.042 0.0408 

𝑚𝑒𝑎𝑛
+ 0.5

∗ √𝑣𝑎𝑟 

0.0694 0.0541 0.0456 0.0464 0.0443 0.0446 

𝑚𝑒𝑎𝑛

+ √𝑣𝑎𝑟
+ 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 

0.0417 0.042 0.0413 0.0419 0.0387 0.0379 

From the simulation we can see, that for almost all block 
characters, the best performance usually located at 𝑘1 = 0 
except for 𝑚𝑒𝑎𝑛 + 0.5 ∗ √𝑣𝑎𝑟 , whose performance at  𝑘1 =
0 is also closest to the minimum value. Here, 𝑘1 = 0 means that 
we taking the coordination with minimum value of related 
characters as the training model size. And the performance of 
expression with addition signature is better than that with minus 
signature, so below figures we only consider addition signature. 
In these character expressions, 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 

shows the best results for all different 𝑘1, while it also has the 
most running time in table I. 

b) Result analyse II 

Below figures show the best simulation results for 𝑚𝑒𝑎𝑛 +

√𝑣𝑎𝑟 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑚𝑒𝑎𝑛 + 3 ∗ √𝑣𝑎𝑟, 𝑚𝑒𝑎𝑛 +

√𝑣𝑎𝑟, and 𝑚𝑒𝑎𝑛 +  0.5 ∗ √𝑣𝑎𝑟 . And we compared the results 
with pure ELM, ESN (Echo state network) and traditional BPN 
(Back Propagating Network). Here simulated ELM windows’ 
sizes were 6*6, 8*8, and 10*10. ESN’s training window size is 
150. The input data dimension of BPN is set as 5*5. It has two 
hidden layers with corresponding node number 21 and 5, its 
activation functions in turns are 'purelin', 'logsig' and purelin'. 

From the results of Figs. 3-9, we can get below conclusions. 

1) The raw data curve is a little random disturbed and is not 
so cyclical distributed especially at the peak section, so 
the accuracies of the estimation results can’t be very high 
in many block characters. 

2) From above results we can see that the predicted curve is 
more periodic repetition than that of the raw data, which 
is the basic characters of the neural network training, and 
is the source of prediction improvement, which deserves 
more deepen research. 

 

Fig. 3. Related results with 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦, 𝑚𝑠𝑒 =0.0379 

 

Fig. 4. Related results with 𝑚𝑒𝑎𝑛 + 3 ∗ √𝑣𝑎𝑟, 𝑚𝑠𝑒 =0.0393 



 

Fig. 5. Related results with 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟, 𝑚𝑠𝑒 =0.0408 

 

Fig. 6. Related results with 𝑚𝑒𝑎𝑛 + 0.5 ∗ √𝑣𝑎𝑟, 𝑚𝑠𝑒 =0.0446 

 

Fig. 7. Pure ELM results, (a) line=col=6, mse=0.0455 (b) line=col=8, 
mse=0.0461 (c) line=col=10, mse=0.0532 

 
Fig. 8. Pure ESN results, washout=150, mse=0.0443 

 
Fig. 9. BPN results, mse=0.0391 

3) The results of our algorithm with addition signature 
usually have better performance than ELM algorithm 
with fixed training window size, which shows the 
advantages of our advanced algorithm. 

4) The results of our algorithm with addition signature are 
better or comparable than the typical ESN in most scenes, 
both algorithms have quick running time when not 
considering block entropy.  

5) The slightly inferior performance compared to our initial 
expectation may be due to unobservable samples’ curve 
characters appeared in the training set, under these 
conditions, some peak value can’t be predicted 
accurately. Its tendency of prediction result differs, too.  

6) The result of BPN algorithm’s prediction accuracy is 
approaching that of best result of 𝑚𝑒𝑎𝑛 + √𝑣𝑎𝑟 +
𝑒𝑛𝑡𝑟𝑜𝑝𝑦, but its total executing time is 4-6 times more 
than that of this type of block characters. 

7) For most figures of our proposed algorithm, the bottom 
section of the raw data curve can be more accurately 
predicted than that of ELM and ESN. And the peak 
section of our predicting curve shows some latency 
compared to the raw data curve, which also has apparent 
lower value of estimated data sequence than the raw data 
sequence in the peak section accompanied with different 
fluctuating curve shapes.  

8) Through deepen observing, the prediction error of ESN 
has some complement characters with ELM (such as 
different peak or valley forecasting error characters, and 
elements addition of two algorithms may reduce the 
errors), so its performance can be further improved by 
subtly combining different algorithms like using some 
types of thresholds for algorithm selection and/or weight 
averaging for prediction results. 

9) By utilizing more training data (blocks in more bottom 
lines and more right columns being used for block 
training), although the running time increased, the 
performance is not apparently increased, which may be 
due to the less correlations of the raw data at different 
time windows. 



IV. FURTHER RESEARCH DIRECTIONS 

We need do below research works further. 

1) Extending the neural network type and related models, 
other new real-time and low complex neural network 
model could be considered, which may further promote 
the algorithm’s performance. 

2) Optimizing the threshold setting, to show the superior of 
block characters in load forecast, threshold expression 
should be carefully optimized and consider more block 
characters, as it takes a vital function in our proposed 
algorithm. 

3) More subtle operation proceeding, we need to further 
design more subtle operation proceedings to deep mine 
the advantages of block characters in load forecast and 
introduce more technique innovations based on the block 
characters like information entropy. 

4) Considering environment data in this simulation, as 
weather data may further improve the performance of 
our algorithm [26], adding it into the simulation is a 
necessary step for future research. So, we need to 
integrate related weather data into the application scenes. 

5) Comparing with more advanced algorithms, here we just 
compare the algorithm with typical algorithms like ELM, 
ESN and BPN. In the future, we will consider more 
advanced algorithms to verify the algorithm’s 
performance. 

6) Trying more steps further load forecast. We will modify 
the block structure to realize multi-steps forecast while 
keeping the advantages of block characters. So, 
improved block structure may be needed. 

V. CONCLUSIONS 

To improve the performance of load forecast in complex 
scenes like EI, we adopt the block characters in ELM neural 
model training window size selection, where minimum value 
with addition signature in block characters expression is more 
suited for ELM prediction. By selecting threshold factor 
intelligently and designing more rational factor threshold, the 
prediction precision can be largely improved. And the result 
analyses show great application potentials, which can be 
effectively used in EI application scenes such as source-
network-load-storage collaboration optimizing. 
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