
In Proceedings of 11th IEEE Heterogeneous Computing Workshop (HCW 2002), in conjunction with 16th International
Parallel & Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale, Florida, USA, April 2002, 14 pages.

Performance Prediction Technology for

Agent-based Resource Management in Grid Environments

Junwei Cao, Stephen A. Jarvis, Daniel P. Spooner,
James D. Turner, Darren J. Kerbyson* and Graham R. Nudd,

High Performance Systems Group, University of Warwick, Coventry, UK
*Modelling, Algorithms, and Informatics Group, Los Alamos National Laboratory, USA

Email address for correspondence: junwei@dcs.warwick.ac.uk

Abstract

Resource management constitutes an important
infrastructural component of a computational grid
environment. The aim of grid resource management is to
efficiently schedule applications over the available
resources provided by the supporting grid architecture.
Such goals within the high performance community rely,
in part, on accurate performance prediction capabilities.

This paper introduces a resource management
infrastructure for grid computing environments. The
technique couples application performance prediction
with a hierarchical multi-agent system. An initial system
implementation utilises the performance prediction
capabilities of the PACE toolkit to provide quantitative
data regarding the performance of complex applications
running on local grid resources. The validation results
show that a high level of accuracy can be obtained, that
cross-platform comparisons can be easily undertaken,
and that the estimates can be evaluated rapidly.

A hierarchy of homogeneous agents are used to
provide a scalable and adaptable abstraction of the grid
system architecture. An agent is a representative of a
local grid resource and is considered to be both a
service provider and a service requestor. Agents are
organised into a hierarchy and cooperate to provide
service advertisement and discovery. A performance
monitor and advisor has been developed to optimise the
performance of the agent system. A case study with
corresponding experimental results are included to
demonstrate the efficiency of the resource management
and scheduling system.

The main features of the system include: hard
quality of service support using PACE performance
prediction capabilities; agent-based dynamic resource
advertisement and discovery capabilities; simulation-
based quantitative grid performance analysis and user-
oriented scheduling of local grid resources.

1. Introduction

It is anticipated that grid computing will deliver high
performance computing capabilities and resource sharing
among dynamic virtual organisations [13,14]. An
essential component of grid infrastructure software is the
service layer, which acts as middleware between grid
resources and grid applications. This work considers the
resource management service, which must efficiently
map applications to available resources within a grid
environment [20]. Such goals within the high
performance community will rely on accurate
performance prediction capabilities.

An existing toolkit, known as PACE (Performance
Analysis and Characterisation Environment) [23], is used
to provide quantitative predictive data concerning the
performance of complex applications running on a local
grid resource. The framework of PACE is based on a
layered methodology that separates software and
hardware system components through the use of
parallelisation templates. The PACE performance
prediction capabilities have been validated using an
ASCI (Accelerated Strategic Computing Initiative)
kernel application called Sweep3D. This application
illustrates the level of accuracy that can be obtained, that
cross-platform comparisons can be easily undertaken,
and that the process benefits from a rapid evaluation time
[4]. While extremely well-suited for managing locally
distributed multi-computers, PACE functions map less
well onto a wide-area environment, where the process of
resource management becomes far more complex. In
order to meet the requirements of performance prediction
for grid computing environments, both scalability and
adaptability of prediction systems are two key challenges
that must be addressed.

• Scalability: A grid has the potential to encompass a
large number of high performance computing
resources. Each constituent of this grid will have its
own function, its own resources and environment.
These components are not necessarily fashioned to
work together in the overall grid. They may be
physically located in different organisations and may
not be aware of each others capabilities.

• Adaptability: A grid is a dynamic environment
where the location, type, and performance of the
components are constantly changing. For example, a
component resource may be added to, or removed
from, the grid at any time. These resources may not
be entirely dedicated to the grid and therefore the
computational capabilities of the system will vary
over time.

An agent-based methodology has been developed for
the management of large-scale distributed systems with
highly dynamic behaviours [6]. The system consists of a
hierarchy of homogenous agents where each agent can be
considered both a service provider and a service
requestor. Multiple homogeneous agents are organised
into federated groups, which have capabilities of service
advertisement and discovery. Different optimisation
strategies and performance metrics are defined and used
to improve the agent behaviours. Issues related to the
utilisation of an agent-based methodology for grid
resource management is discussed in [5] and [7]. In this
paper, an initial implementation of the agent-based grid
resource management system is described. The agent acts
as a local resource manager, using a user-oriented
scheduling algorithm and coupled with PACE to provide
predictive capabilities regarding local grid resources and
the services they can provide. At a meta-level, agents
cooperate to advertise and discover services. A case study
and corresponding experimental results are included in
this paper. The results demonstrate the effect of
management and scheduling obtained through the
cooperation of an agent system coupled with the PACE
performance prediction tool.

There are several solutions that currently address
issues of grid resource management and scheduling.
These include Globus [11], Legion [12], NetSolve [10],
Condor [24], Ninf [22] and Nimrod/G [3]. While many
of these projects utilise query-based mechanisms for
resource discovery and advertisement [20], this work
adopts an agent-based approach. The agent-based system
allows agents to control the query process and make
resource discovery decisions based on their own internal
logic rather than rely on a fixed function query engine.
The resource management system described in this work
can provide hard quality of service (QoS) support as

defined in [20]. However, unlike Nimrod/G, in which
grid resource estimation is performed through heuristics
and historical information, the performance prediction
capabilities in this research are provided through PACE.
In the Condor system, scheduling aims to maximise the
utilisation of grid resources (resource-oriented); another
approach, favoured by Nimrod and the research in this
paper, is to provide a system which meets user specified
deadlines (user-oriented).

Several new grid projects utilise existing distributed
computing technologies such as CORBA [26] and Jini
[2]. CORBA is not designed for the development of high
performance computing applications, however there has
been research aimed at providing CORBA based tools in
a variety of different contexts. For example, in the work
described in [30] a CORBA Commodity Grid (CoG) Kit
enables the development of advanced Grid applications
which maintain state-of-the-art software engineering
practices and also reuse existing grid infrastructure.
However, such technologies only enable resource sharing
within a single organisation [14]. In [15] a computational
community that supports the federation of resources from
different organisations is described; this system is
designed and implemented in Java and Jini. JiPANG (A
Jini-based Portal Augmenting Grids) [28] is a portal
system and a toolkit that provides a uniform access
interface layer to a variety of grid systems. This allows
the development of Jini-based systems on top of the Java
platform.

Agent technologies have been used for the
development of distributed software systems for several
years [16]. An agent-based approach provides a clear
high-level abstraction and a more flexible system
implementation [17]. Multi-agent systems have recently
been introduced in grid development and resource
management. This work [18] includes a model for
distributed awareness and a framework for the dynamic
assembly of agents for the monitoring of network
resources. An “Agent Grid” is described in [25] that
integrates services and resources for establishing multi-
disciplinary Problem Solving Environments (PSEs).
Specialised agents contain behavioural rules and can
modify these rules based on their interaction with other
agents and with the environment in which they operate.
The agent-based methodology used in this research can
also be used for the integration of multiple services and
resources. This is done using hierarchy of homogenous
agents, rather than by utilising a collection of specialised
agents.

The agent-based system described in this work is
investigated through quantitative performance analysis
using modelling and simulation techniques. Other grid
simulation models have been built: Simgrid [9] is a

simulation toolkit for the study of scheduling algorithms
for distributed applications; GridSim [21] investigates
effective resource allocation techniques based on a
computational economy. Grid performance modelling
and simulation is a valuable tool, especially as current
grid computing research has a limited number of
practical grid environments and research test-beds with
which to work [8].

The paper is organised as follows: section 2
introduces the PACE toolkit and corresponding
methodology for performance prediction; in section 3, the
system architecture and agent resource management
system are described; a case study and experimental
results are included in section 4; the paper concludes in
section 5.

2. Performance Prediction Using PACE

The PACE performance prediction capabilities are
essential to the system implementation. In this section
the PACE toolkit, validation of the prediction capabilities
and grid-enabling extensions are introduced.

2.1 PACE Toolkit

The main components of the PACE toolkit are
shown in Figure 1; they include the application tools, the
resource tools and an evaluation engine [23].

Evaluation Engine (EE)

Application Tools (AT)

Source
Code

Analysis

Object
Editor

Object
Library

PSL Scripts

Compiler

Application Model

Resource Tools (RT)

CPU Network
(MPI,
PVM)

Cache
(L1, L2)

HMCL Scripts

Compiler

Resource Model

Performance
Prediction

On-the-fly
analysis

Multi-processor
scheduling

Figure 1. The PACE Toolkit

• Application Tools: A core component of this part of
the toolkit is the performance specification language
(PSL) which describes the performance aspects of an
application and also its parallelisation. The Source
Code Analyser is used to convert sequential source
code components into performance descriptions.
Users edit these descriptions using the object editor;

existing objects can be retrieved from an Object
Library. The performance descriptions are collated
into application PSL scripts which are then compiled
into an Application Model. This forms one of the
inputs into the Evaluation Engine, which itself acts
as a repository and analysis tool for the application-
level performance information.

• Resource Tools: A hardware modelling and
configuration language (HMCL) is used to define the
computing environment in terms of its constituent
performance model components. The Resource Tools
provide several benchmarking programs to measure
the performance of CPU, network, and memory
aspects of hardware platforms respectively. The
measurements are represented in HMCL scripts and
combined to form a resulting Resource Model. This
system-level performance information provides a
second input to the Evaluation Engine.

• Evaluation Engine: The evaluation engine is the
kernel of the PACE toolkit. The Evaluation Engine
executes completed performance models to produce
evaluation results, these include time estimates and
trace information relating to the expected application
behaviour.

Examples of the use of PACE include on-the-fly
performance analysis for application execution steering
[1], and dynamic multi-processor scheduling for efficient
resource management [19].

2.2 Performance Validation

The performance prediction capabilities of PACE
have been successfully demonstrated using the ASCI
kernel application Sweep3D [4]. The validation
experiments are carried out on two high performance
platforms: an SGI Origin 2000 multiprocessor and a
cluster of Sun Ultra1 workstations. The validation results
show that:

• a good level of predictive accuracy can be achieved
(the maximum predictive error is 20%, the average
is approximately 10%);

• performance evaluation is rapid (typically seconds of
CPU use) for a given system and problem size;

• from the results it is easy to obtain performance
comparisons across different computational systems.

It has been shown that the PACE system can produce
reliable performance information which can then be used
in the investigation of application and system
performance. In [19] it is shown that performance data
produced by PACE can be used for the management of
parallel and distributed systems. The PACE toolkit was

not however developed in the context of grid computing.
In order to apply PACE to grid problems a number of
modifications have been made. One of these
modifications is the inclusion of transaction-based
performance modelling.

2.3 Transaction-based Modelling

PACE operates by characterising an application in
terms of its principle operations and its parallelisation
strategy. It then couples these requirements with the
hardware resources to obtain predictions of execution
times. At present, costs are associated with individual
machine level instructions which allows the toolkit to
model detailed subtleties in an application code. This is
considered too fine grained for grid applications and so
variant of PACE is currently under development which
uses ‘ transactions’ as base units of work [27].

Figure 2 shows the original PACE structure
(depicted on the left) which describes applications by
means of a layered modelling language. While
maintaining the same structure, the coarse-grained
PACE (on the right) utilises transactions and transaction
maps to characterise applications more rapidly. An
application is represented as a number of transactions
each of which encapsulate key components of an
application code; a transaction map describes the
interrelationships between these transactions.

Application

Subtask

Parallel Template

Hardware

Model Parameters

Predicted Execution Time

Application

Transaction

Transaction Map

Distributed System

User and System Policies

Predicted Execution Strategies

Figure 2. Coarse-grained PACE

Transaction-based application modelling enables

efficient remote performance evaluation and prediction to
be performed. This makes the toolkit highly appropriate
for use in dynamic grid-like environments which consist
of a number of heterogeneous systems. The aim of this
research is to enable this approach without sacrificing
performance accuracy. The kernel of the system is
defined in a transaction definition language (TDL); this
is described in detail in [29].

3. Agent-based Resource Management

An agent-based approach is used to integrate PACE
functionality with grid resource management. In this
section, both the overall architecture of the system and
the structure of an individual agent are described.

3.1 System Architecture

An overview of the agent-based resource
management architecture is il lustrated in Figure 3. The
main components include grid users, grid resources,
agents and a performance monitor and advisor (PMA).
These are introduced in detail below.

Agent

Agent

Agent

Agent

Agent

User

Application models
Cost models

PMA

Resources

Resource models

Figure 3. System Architecture

3.1.1. Grid Users

There are different kinds of users of a grid
computing environment. These include grid service and
tool developers, application developers and grid end
users.

The developers of the tools, compilers, libraries, and
so on implement the programming models and services
used by application developers. MPI and PVM are
included in these categories. Grid service and tool
developers are a small group of grid users and are
therefore not the main focus in the context of this work.

Application developers comprise those who construct
grid-enabled applications using grid tools. There are
different kinds of grid applications: distributed
supercomputing, high throughput, on demand, data
intensive and collaborative applications. The applications
described in this work mainly refer to scientific

supercomputing applications; that is, large problems
requiring a large amount of CPU and memory, etc., and
which are (for the most part) written using MPI and
PVM.

Most grid users, like most users of computers or
networks today, will not write programs. Instead, these
end users will use grid-enabled applications that make
use of grid resources and services. In some cases,
application developers will also be the end users of the
applications that they develop. The grid users in Figure 3,
and mentioned in the following sections, are considered
to be scientists, who develop scientific supercomputing
applications and who use them to solve large problems in
a grid context.

The user-side software primarily includes the PACE
Application Tools. When a parallel application is
developed, a corresponding application model is also
produced. PACE performance modelling is an automated
process, targeted at the non-professional performance
engineer. When an application is submitted for
execution, an associated performance model should also
be attached.

Another component included in a grid request is the
cost model, describing the user requirements concerning
the application execution. This would include, for
example, the deadline for the application to complete.
Although there are a number of other metrics appropriate
in this context, the current focus of this work is on
execution time.

3.1.2. Grid Resources

A grid resource can provide high performance
computing capabilities for grid users. A resource can
include Massive Parallel Processors (MPP), or a cluster
of workstation or PCs. A grid resource can be considered
a service provider of high performance computing
capabilities.

In this system, PACE is used to create a hardware
characterisation template that provides a model of each
hardware resource. This characterisation is derived from
computational and communication benchmarks which
can be rapidly evaluated to provide dynamic performance
data. The PACE hardware model is integral to the
service information which is advertised across the agent
hierarchy.

3.1.3. Agents

Agents comprise the main components in the system.
Each agent is viewed as a representative of a grid
resource at a meta-level of resource management. An
agent can therefore be considered a service provider of

high performance computing capabilities. Agents are
organised into a hierarchy. The hierarchy of homogenous
agents provides a meta-level view of the grid resources.
The service information of each grid resource can be
advertised in the agent hierarchy (both upwards and
downwards); agents can also cooperate with each other to
discover available resources.

Each agent utilises Agent Capability Tables (ACTs)
to record service information of other agents. An ACT
item is a tuple containing an agent ID and corresponding
service information.

An agent can choose to maintain different types of
ACTs according to different sources of service
information. For example, T_ACT is used to record the
service information of local resources. Each agent can
also have one L_ACT to record the service information
received from its lower agents and one G_ACT from the
upper agent. C_ACT is used to store cached service
information.

There are two methods of maintaining ACT
coherency - data-pull and data-push, each of which occur
periodically or can be driven by system events.

• Data-pull - An agent asks other agents for their
service information either periodically or when a
request arrives.

• Data-push - An agent submits its service information
to other agents in the system periodically or when
the service information is changed.

An agent uses the ACTs as a knowledge base. This
is used to assist in the service discovery process triggered
by the arrival of a request. Service discovery involves
querying the contents of the ACTs in the order: T_ACT,
C_ACT, L_ACT, and G_ACT. If an agent exhausts the
ACTs, and does not obtain the required service
information, it can submit the request to its upper agent
or terminate the discovery process.

The simple protocol of service advertisement and
discovery described above allows agents to be configured
with different strategies, leading to different agent
behaviours. Agents advertise and discover services
according to their own internal logic; this allows a
flexible implementation of grid resource management.

The PACE evaluation engine is integrated into each
agent. Its performance prediction capabilities are used for
local resource management in the scheduling of parallel
applications over available local processors. The
evaluation engine is also used to provide support to the
service discovery process.

The agent system bridges the gap between grid
application users and grid resources. A introduction to
the use of agent-based service discovery for grid resource
management can be found in [7]. The agent hierarchy

also allows scalability to be addressed. Service
advertisement and discovery are processed stepwise
between neighbouring agents only. This feature plays an
important part in system scalability. Another important
factor is the capacity for agents to be able to adjust their
service advertisement and discovery behaviours, thus
adapting to the highly dynamic grid environment. This is
achieved through the introduction of a performance
monitor and advisor.

3.1.4. Performance Evaluation

Performance issues arise from the dynamic nature of
the grid resources. Unlike other work that focus on data
representation and communication protocols, this
research enables the performance of the agent system to
be investigated quantitatively. Figure 3 shows the
monitoring role of the PMA. The PMA observes agent
communication traffic with the intention of improving
agent performance.

Unlike facilitators or brokers in classical agent-based
systems, the PMA is not central to the rest of the agents.
It neither controls the agent hierarchy nor serves as a
communication centre in the physical and symbolic
sense. If the PMA ceases to function, the agent system
has no operational difficulties and continues with
ordinary system behaviour. Efficiency improvements to
the agent system are only made possible through the
modelling and simulation mechanism built into the
PMA. The PMA also avoids any one agent in the system
becoming a single system bottleneck.

The PMA is composed of a model composer and a
simulation engine. Statistical data is monitored from
each of the agents and input to the PMA for performance
modelling. The performance model is processed by the
simulation engine in the PMA so that new optimisation
strategies can be chosen and the performance metrics
improved. The process of simulation allows a number of
strategies to be explored until a better solution is selected.
The selected optimisation strategies are then returned
and used to reconfigure the agents in the system.

The metrics used to describe the performance of the
agent system include the service discovery speed, the
overall system efficiency, the load balancing and also the
discovery success rate. Corresponding performance
optimisation strategies include the use made of the ACTs,
the limits placed on the service lifetime and the scope of
advertisement and discovery, agent mobility and the
service distribution. These features are not described in
detail in this paper; for more information of these and
other aspects of the system, see [5].

3.2. Agent Structure

The structure of an agent - shown in Figure 4 - is
divided into three component layers corresponding to
communication, coordination and local management.

To another agent Discovery Advertisement

Communication Module

ACT
Manager

PACE
Evaluation

Engine

Scheduler

Match
Maker

ACTs

Application Model

Eval. Results

R
es

ou
rc

e
In

fo
.

A
pp

lic
at

io
n

In
fo

.

S
er

vi
ce

 I
nf

o.

C
os

t M
od

el

Sc
he

d.
 C

os
t

Resource
Monitoring

Resource
Allocation

Application
Management

Application Execution

Agent ID
C

oo
rd

in
at

io
n

L
ay

er

C
om

m
un

ic
at

io
n

L
ay

er

L
oc

al

M
an

ag
em

en
t

L
ay

er

Figure 4. Agent Structure

The communication layer of each agent performs
communication functions and acts as an interface to the
external environment. From the communication module,
an agent can receive both service advertisement and
discovery messages. It interprets the contents of each
message and submits the information to corresponding
modules in the coordination layer of the agent. For
example, an advertisement message from another agent
will be directly sent to the ACT manager in the agent
coordination layer. The communication module is also
responsible for sending service advertisement and
discovery messages to other agents.

There are four components in the coordination layer
of an agent: the ACT manager, the PACE evaluation
engine, a scheduler and a matchmaker. They work
together to make decisions as to how an agent should act
on the receipt of messages from the communication layer.
For example, the final response to a service discovery
message would involve application execution on the local
resource or the dispatching of the request to another
agent.

The main functions of local resource management in
an agent include application management, resource
allocation and resource monitoring. Application
execution commands are sent from the coordination layer
to the local agent manager, these commands include the
scheduling information for an application (start time,
allocated processor ids etc). The Application

Management part of the system is also responsible for
managing the queuing of applications that have been
scheduled to be executed on the locally managed
resources. At the start time an application is dispatched
to the Resource Allocation component. Resource
allocation includes wrappers for different application
execution environments including MPI and PVM; it is at
this stage that the application is actually executed on the
local scheduled processors. Another important
component of local resource management is the resource
monitoring. This is responsible for controlling the PACE
benchmark programs which are executed on the local
resource and from which corresponding resource models
are dynamically created. The resource monitor is also
responsible for communicating other resource and
application information between the application
management and resource allocation modules. It also
coordinates all the collected information concerning local
resource into service information which is then reported
to the T_ACT in the coordination layer of the agent.

These agent functions are described in detail below.
In particular, the implementation of the agent
coordination layer is emphasised and the four main
components of the scheduling algorithm are documented.

3.2.1. ACT Manager

The ACT manager controls agent access to the ACT
database, where service information regarding grid
resources is located. Figure 5 illustrates the content of
this service information.

 Service Info. Resource Info.

Application Info.

Processor 1 ID

Processor 2 ID

Type

PACE resource model

Type

PACE resource model

Processor n ID

…

Application 1 ID

Application 2 ID

Start time

End time

Start time

End time

Application m ID

…

Application-Resource Mapping

…

…

Figure 5. Service Information

Service information for a grid resource should
include details of those aspects that have an impact on
the performance of the resource and can therefore be used
to evaluate its performance. Service information is
therefore composed of resource information, application
information, and the mapping between the applications
and the resources.

Consider a grid resource with n processors where
each processor Pi has its own type tyi. A PACE hardware
model can be used to describe the performance
information of this processor:

{ }P P i ni= =| , ,......,12

{ }ty ty i ni= =| , ,......,12

If m is the number of applications that are running,

or being queued to be executed on a grid resource, then
each application Aj has two attributes – a scheduled start
time tsj and an end time tej. The applications of a grid
resource can then be expressed as follows:

{ }A A j mj= =| , ,......,12

{ }ts ts j mj= =| , ,......,12

{ }te te j mj= =| , ,......,12

MAj is the set of processors that are allocated to

application Aj:

{ }MA MA j mj= =| , ,......,12

{ }MA P l kj i jl
= =| , ,......,12

where kj is the number of processors that are allocated to
application Aj. M then is a 2D array, which describes the
mapping relationships between resources and
applications using boolean values.

{ }M M i n j mij= = =| , ,......, ; , ,......,12 12

M
if

if

P MA

P MAij

i j

i j

=
�� � ∈

∉
1

0

3.2.2. PACE Evaluation Engine

The request information consists of the PACE
application model (am), which includes all performance
related information of an application Ar. The
requirements of the application are specified in a vector;
this includes a number of metrics including the deadline
for the execution of the application, treq.

The PACE evaluation engine can produce
performance prediction information based on the
application model am and the resource information from
the ACT manager, ty. Prediction data such as application
execution time, exet, can be derived for the applications
execution on the given resource.

()exet eval ty am= ,

Rather than running the application on all processors
for a given grid resource P, an agent can select an
appropriate subset of processors P (note that P cannot be
an empty set Φ), this is evaluated and expressed as
follows:

()∀ ⊆ ≠ ⊆ ≠ =P P P ty ty ty exet eval ty am, , , , ,Φ Φ

The output of the PACE evaluation engine, exet, forms
one of the inputs to the scheduler of the agent. Another
input to the scheduler is the application information from
an ACT item.

3.2.3. Scheduler

An ACT item acts as a view of a grid resource that is
remote to the agent. However, an agent can still schedule
the required application execution based on this resource
information. The function of the scheduler is to find the
earliest time at which an application terminates on the
resource described by the ACT item, tsched.

()t tesched
P P P

r=
∀ ⊆ ≠

min
, Φ

The application has the possibility of being allocated

to any selection of processors on a grid resource. The
scheduler should consider all these possibilities and
choose the earliest end time of the application execution.
In any of these situations, the end time is equal to the
earliest possible start time plus the execution time, which
is described as follows:

te ts exetr r= + .

The earliest possible start time for application Ar on

a selection of processors is the latest free time of all the
selected processors if there are still applications running
on the selected processors. If there is no application
currently running on the selected processors, application
Ar can be executed on these processors immediately.
These is expressed as follows:

()ts t tdr
i P P

i
i

=
��� ����

∀ ∈
max , max

,

,

where tdi is the latest free time of processor Pi. This
equals the maximum end time of applications that are
allocated to process Pi:

()td tei
j M

j
ij

=
∀ =
max

, 1

.

In summary, tsched can be calculated as follows:

()t t te exetsched
P P P i P P j M j

i ij

=
��	
�����	
���

+
��	
� �

∀ ⊆ ≠ ∀ ∈ ∀ =
min max , max max

, , ,Φ 1

.

It is not necessarily the case that scheduling all

processors to an application will achieve higher
performance. On the one hand, the start time of
application execution may be earlier if only a number of
processors are selected; on the other hand, with some
applications, execution time may become longer if too
many processors are allocated.

The scheduling algorithm described above is used in
an initial system implementation. The complexity of the
algorithm is determined by the number of possible
processor selections, which can be calculated as:

C C Cn n n
n n1 2 2 1+ + + = −......

It is clear that if the number of processors of a grid

resource increases, the complexity of the local resource
scheduling algorithm will increase exponentially.
Though a local resource in grid environment can only
have limited number of processors, this algorithm cannot
scale well when the number of processors increases.
Another factor is that the scheduling policy of this
algorithm is to meet requirements from the user, instead
of maximising the resource utilisation. There is no
rescheduling process for previously scheduled
applications. New algorithms need to be developed for
such cases.

The importance of the efficiency of the PACE
evaluation engine is clear. During each scheduling
process, the evaluation function can be called 2n-1 times.
Even in the situation where all the processors of a grid
resource are of the same type, the evaluation function still
needs to be called n times. PACE evaluation can be
performed very quickly to produce prediction results ‘on
the fly’ ; this is a key feature in the use of PACE for grid
resource management and in the provision of predictive
QoS support for service discovery.

3.2.4. Matchmaker

The matchmaker in an agent is responsible for
comparing the scheduling results with the user
requirements attached to the request. The comparison
results lead to different decisions on agent behaviours.

In terms of application execution time, if treq ≥ tsched,
the corresponding resource can meet the user
requirement. If the corresponding ACT item is in the
T_ACT, a local resource is available for application

execution and the application execution command will be
sent to the local management in the agent. Otherwise, the
agent ID of the corresponding ACT item is returned, and
the agent will dispatch the request to that agent via the
agent ID.

If treq < tsched, the corresponding resource cannot
meet the requirement from the user. The agent continues
to look up other items in the ACTs until the available
service information is found. The agent can look up
different ACTs in turn and in the case of there being no
available service information in the ACTs, the agent may
submit or dispatch the request to its upper or lower
agents for further discovery.

There may be many other metrics in the user
supplied cost model and in this case the corresponding
evaluation mechanisms should also be provided in each
agent. Their implementation has parallels with the
application execution time-based scheme and as a result
is not discussed in further detail in this paper.

4. A Case Study

Experiments have been designed using the initial
system implementation. There are two main parts in the
design of the experiments. The system itself includes
agents, resources and agent behaviour strategies used in
the experiment. The automatic users of the system are
also designed to send application execution requests with
different frequencies, which add different workloads onto
the system. Experimental results are also included to
illustrate how the agent-based resource management
system schedules applications onto available resources.

4.1. System Design

There are eight agents in the experimental system.
The agent hierarchy is shown in Figure 6.

S5 S7 S6

S3 S2 S4

S8

S1

Figure 6. Case Study: Agent Hierarchy

The agent at the head of the hierarchy is S1, which
has three lower agents: S2, S3, and S4. The agent S2 has

no lower agents, while S3 and S4 have two lower agents
each.

Agents represent heterogeneous hardware resources
containing sixteen processors per resource. As shown in
Table 1, the resources range in their computational
capabilities. The SGI multi-processor is the most
powerful, followed by the Sun Ultra 10, 5, 1, and
SparcStation in turn.

Table 1. Case Study: Resources

Agent Resource Type #Processors/Hosts
S1 SGI Origin 2000 16

S2 SGI Origin 2000 16

S3 Sun Ultra 10 16

S4 Sun Ultra 10 16

S5 Sun Ultra 1 16

S6 Sun Ultra 5 16

S7 Sun SPARCstation 2 16

S8 Sun SPARCstation 2 16

In the experimental system, each agent maintains a

set of capability tables - T_ACT, L_ACT and G_ACT.
T_ACTs are maintained by the event-driven data-push
service advertisement. L_ACTs are updated every ten
seconds using a data-pull. G_ACTs are also updated by
data-pull, at a frequency of every thirty seconds. All of
the agents employ identical strategies with the exception
of the agent at the head of the hierarchy (S1) that does not
maintain a G_ACT.

4.2. Automatic User

The applications used in the experiments include
typical scientific computing programs. Each application
has been modelled and evaluated using PACE. An
example of PACE predications for the system S1, which
represents the most powerful resource in the experiment,
can be found in Figure 7. The predictions for the other
systems follow a similar trend and are therefore omitted.

As shown in the figure, the run time of sweep3d
decreases when the number of processors increases. At
the same time the parallel efficiency also decreases. In
fact, when the number of processors is more than 16, the
run time does not improve any further. The results of the
application improc show a different trend. Run time of
improc decreases to an optimum of 8 processes – after
which the run time then increases. Different applications
have very different performance scenarios which has an
important impact on the application scheduling results.

0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16

The Number of Processors

R
un

ni
ng

 T
im

e
on

 S
G

IO
ri

gi
n2

00
0

(s
ec

)

sweep3d

fft

improc

closure

jacobi

memsort

cpi

Figure 7. Case Study: Applications

An application execution request for one of the seven

test applications is sent at random to an agent.
Additionally, the required execution time for the
application is also selected randomly from a given
domain; the bounds of the application requirements can
be found in Table 2.

Table 2. Case Study: Requirements

Application Minimum
Requirement (s)

Maximum
Requirement (s)

sweep3d 4 200
fft 10 100
improc 20 192
closure 2 36
jacobi 6 160
memsort 10 68
cpi 2 128

The automatic users are configured so that they send

requests to the agents with different frequencies. As
shown in Table 3, four experiments are designed with
different system workloads.

Table 3. Case Study: Workloads

Experiment No. 1 2 3 4
Minimum Request Interval (s) 1 1 1 1
Maximum Request Interval (s) 7 5 3 1
Average Frequency (s/app) 4 3 2 1
Experiment Last Time (min) 7 7 7 5
Total Application Number 109 149 215 293

The interval of requests sent in each experiment is

chosen randomly from a given domain, resulting in

different average frequencies. Experiment No. 2, for
example, lasts approximately 7 minutes; during this
period, 149 requests are sent, that is one request sent
every 3 seconds on average. The experimental results are
discussed below.

4.3. Experiment Results

The experimental results can be found in Tables 4
and 5. These illustrate the number of applications
accepted by a particular agent in each experiment and
also the number of service discovery steps required to
meet the overall workload. Tasks can be rejected by the
system (failed) if insufficient resources are available to
meet the requirements of the user.

Table 4. Experiment Results: Application
Execution

Experiment Number

1 2 3 4
Agent

No. % No. % No. % No. %
S1 13 12 27 19 45 21 45 15

S2 13 12 15 10 27 13 42 14

S3 15 14 20 13 27 13 38 13

S4 14 13 27 19 31 14 39 13

S5 10 9 15 10 20 9 28 10

S6 13 12 17 11 23 11 31 11

S7 14 13 12 8 16 7 26 9

S8 14 13 11 7 17 8 24 8
failed 3 2 5 3 9 4 20 7
Total 109 100 149 100 215 100 293 100

Table 5. Experiment Results: Service Discovery

Experiment Number

1 2 3 4
Step

No. % No. % No. % No. %
0-step 106 97 114 77 143 66 199 68
1-step 3 3 24 16 38 18 29 10
2-step 0 0 11 7 31 15 53 18
3-step 0 0 0 0 3 1 12 4
Total 109 100 149 100 215 100 293 100

Experiment No. 1

In this experiment, the system workload is light
relative to the system capabilities, with an application
request being sent every four seconds. This results in a
balanced application distribution on the agents and the
amount of requests that end unsuccessfully is small.
Table 5 illustrates that 97% of service requests are
completed with no service discovery.

Experiment No. 2
When the system workload becomes heavier, S7 and

S8 cannot meet the computational requirements, and
therefore submit the request to their upper agent S4. This
leads to a 6% increase in workload on S4, and a 13%
increase in the number of 1-step discovery requests.
While heavily loaded, S1 is sufficiently powerful to serve
19% of the total application requests.

Experiment No. 3

The system workload increases further. The 5%
decrease of application executions on S4 indicates that the
local resource of S4 has reached its capability. Requests
submitted from S7 and S8 are passed to S1, which leads to
an 8% increase in the number of 2-step discovery
processes. Service discovery amongst the agents becomes
more active when the system workload increases.

Experiment No. 4

Experiment four represents a heavily loaded system.
A decrease of 6% in accepted applications on S1 indicates
that S1 has also reached its capacity. This doubles the
number of failed requests. The number of 1-step
discovery processes decreases by 8%, while 2-step and 3-
step service discovery processes increase by 3%. This
indicates that the whole system has reached its capability
limit, resulting in more complex service discovery in
order to find available resources.

With the workload increasing, the trends for the

distributions of application execution and service
discovery are shown in Figures 8 and 9 respectively.
Some generalised information can be concluded.

Figure 8 illustrates that when the system workload
increases, resources will reach their computational
capabilities in turn. The more powerful a resource is, the
later it reaches its limitation. The peaks appearing at the
curves S1 and S4 indicate the time the corresponding
resource reaches its limitation.

Another interesting phenomenon is that the system
workload is balanced when it is extremely light in
experiment 1 and heavy in experiment 4. In experiment 1,
this occurs as a result of averagely sent requests and the
need for no service discovery, while in experiment 4, the
distribution of applications over the eight systems is
balanced according to the system capabilities. The agent
load corresponds to the computing capabilities of the
respective resource. The agents S1 and S2, which
represent the most powerful resources in the
experimental environment, serve a larger percentage of
the applications, this is followed by S3, S4, S6 and S5.
Only a small percentage of the requests are serviced by
the agents S7 and S8.

Figure 9 illustrates the trend in service discovery. As
the system becomes more heavily loaded, the number of
0-step discoveries decreases with a related increase in the
number of 1-step processes. Similarly, as load increases
further the number of 1-step processes decreases with a
rise in 2-step discovery. In general, when the workload
increases, more complex service discovery processes
occur while simpler ones disappear. However, because
the number of agents in the experimental system is small,
no more complex (more than 4-step) service discovery
processes occur.

0

5

10

15

20

25

1 2 3 4

Experiment Number

A
pp

lic
at

io
n

D
is

tr
ib

ut
io

n
ag

ai
ns

t A
ge

nt
s

(%
)

S1

S2

S3

S4

S5

S6

S7

S8

failed

Figure 8. Experiment Results: Trend I

0

20

40

60

80

100

1 2 3 4

Experiment Number

A
pp

li
ca

ti
on

 D
is

tr
ib

ut
io

n
ag

ai
ns

t S
er

vi
ce

D

is
co

ve
ry

 (
%

) 0-step

1-step

2-step

3-step

Figure 9. Experiment Results: Trend II

While this experimental system is far from a

representative grid-sized environment, the experimental
results demonstrate that the performance-driven agent-
based resource management, utilising service
advertisement and discovery, is effective for scheduling
applications that require grid-like distributed resources.

5. Conclusions

The use of performance prediction techniques for
agent-based resource management in grid environments
is presented in this work. An initial implementation of an
agent-based resource management system is described. A
case study is described in detail to demonstrate the
efficiency of the resource management and scheduling
capabilities of the system. The main features in this work
include:

• hard QoS support using the PACE performance
prediction capabilities;

• agent-based dynamic resource advertisement and
discovery;

• simulation-based quantitative grid performance
analysis;

• and user-oriented scheduling of local grid resources.

Future work will focus on the system enhancement.
Some existing standards, languages, tools and protocols
can be utilised. For example, the agents and the PMA
can be developed using Java and an XML format for data
representation. An agent communication language
(ACL) can be used to allow agents to communicate with
each other at a higher-abstracted knowledge level. The
system will also be integrated with current grid standard
toolkit Globus.

Acknowledgements

This work is sponsored in part by grants from the
NASA AMES Research Centre (administered by
USARDSG, contract no. N68171-01-C-9012) and the
EPSRC (contract no. GR/R47424/01).

References

[1] A. M. Alkindi, D. J. Kerbyson, G. R. Nudd, and E.

Papaefstathiou, “Optimisation of Application Execution
on Dynamic Systems”, Future Generation Computer
Systems, Vol. 17, No. 8, pp. 941-949, 2001.

[2] K. Amold, B. O’Sullivan, R. Scheifer, J. Waldo, and A.
Woolrath, The Jini Specification, Addison Wesley,
1999.

[3] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid”, in Proc. 4th Int.
Conf. on High Performance Computing in Asia-Pacific
Region, Beijing, China, 2000.

[4] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R.
Nudd, “Performance Modelling of Parallel and
Distributed Computing Using PACE” , in Proc. 19th IEEE

Int. Performance, Computing and Communication Conf.,
Phoenix, Arizona, USA, pp. 485-492, 2000.

[5] J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performance
Evaluation of an Agent-Based Resource Management
Infrastructure for Grid Computing” , in Proc. 1st IEEE Int.
Symp. on Cluster Computing and the Grid, Brisbane,
Australia, pp. 311-318, 2001.

[6] J. Cao, D. J. Kerbyson, and G. R. Nudd, “High
Performance Service Discovery in Large-scale Multi-
agent and Mobile-agent Systems” , Int. J. Software
Engineering and Knowledge Engineering, Special Issue
on Multi-Agent Systems and Mobile Agents, World
Scientific Publishing, Vol. 11, No. 5, pp. 621-641, 2001.

[7] J. Cao, D. J. Kerbyson, and G. R. Nudd, “Use of Agent-
based Service Discovery for Resource Management in
Metacomputing Environment” , in Proc. 7th Int. Euro-Par
Conf., LNCS 2150, Springer-Verlag, pp. 882-886, 2001.

[8] J. Cao, “Agent-based Resource Management for Grid
Computing” , PhD Dissertation, Dept. of Computer
Science, Univ. of Warwick, 2001.

[9] H. Casanova, “Simgrid: A Toolkit for the Simulation of
Application Scheduling” , in Proc. 1st IEEE Int. Symp. on
Cluster Computing and the Grid, Brisbane, Australia, pp.
430-437, 2001.

[10] H. Casanova, and J. Dongarra, “Applying NetSolve’ s
Network-Enabled Server” , IEEE Computational Science
& Engineering, Vol. 5, No. 3, pp. 57-67, 1998.

[11] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, and S. Tuecke, “A Resource
Management Architecture for Metacomputing Systems” ,
in Proc. IPPS/SPDP '98 Workshop on Job Scheduling
Strategies for Parallel Processing, 1998.

[12] S. J. Chapin, D. Katramatos, J. Karpovich, and A.
Grimshaw, “Resource Management in Legion” , Future
Generation Computer Systems, Vol. 15, No. 5, pp. 583-
594, 1999.

[13] I. Foster, and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan-Kaufmann,
1998.

[14] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of
the Grid: Enabling Scalable Virtual Organizations” , to
appear in Int. J. Supercomputer Applications, 2001.

[15] N. Furmento, S. Newhouse, and J. Darlington, “Building
Computational Communities from Federated Resources” ,
in Proc. of 7th Int. Euro-Par Conf., LNCS 2150, Springer-
Verlag, pp. 855-863, 2001.

[16] N. R. Jennings, and M. J. Wooldridge (eds), Agent
Technology: Foundations, Applications, and Markets,
Springer-Verlag, 1998.

[17] N. R. Jennings, “An Agent-based Approach for Building
Complex Software Systems” , Communications of the
ACM, Vol. 44, No. 4, pp. 35-41, 2001.

[18] K. Jun, L. Boloni, K. Palacz, and D. C. Marinescu,
“Agent-Based Resource Discovery” , in Proc. 9th IEEE
Heterogeneous Computing Workshop, 2000.

[19] D. J. Kerbyson, J. S. Harper, E. Papaefstathiou, D. V.
Wilcox, and G. R. Nudd, “Use of Performance
Technology for the Management of Distributed Systems” ,
in Proc. 6th Int. Euro-Par Conf., LNCS 1900, Springer-

Verlag, pp. 149-159, 2000.
[20] K. Krauter, R. Buyya, and M. Maheswaran, “A

Taxonomy and Survey of Grid Resource Management
Systems”, to appear in Software: Practice and
Experience, 2001.

[21] M. Murshed, R. Buyya, and D. Abramson, “GridSim: A
Toolkit for the Modelling and Simulation of Global
Grids”, Technical Report, Monash University, 2001.

[22] H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M.
Sato, and S. Sekiguchi, “Util izing the Metaserver
Architecture in the Ninf Global Computing System” , in
Proc. High-Performance Computing and Networking,
LNCS 1401, Springer-Verlag, pp. 607-616, 1998.

[23] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.
Perry, J. S. Harper, and D. V. Wilcox, “PACE – A
Toolset for the Performance Prediction of Parallel and
Distributed Systems”, Int. J. High Performance
Computing Applications, Special Issues on Performance
Modelling, Sage Science Press, Vol. 14, No. 3, pp. 228-
251, 2000.

[24] R. Raman, M. Livny, and M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput
Computing”, in Proc. 7th IEEE Int. Symp. on High
Performance Distributed Computing, 1998.

[25] O. F. Rana, and D. W. Walker, “The Agent Grid: Agent-
Based Resource Integration in PSEs”, in Proc. 16th
IMACS World Congress on Scientific Computation,
Applied Mathematics and Simulation, Lausanne,
Switzerland, 2000.

[26] D. Slama, J. Garbis, and P. Russell, Enterprise Corba,
Prentice Hall, 1999.

[27] D. P. Spooner, J. D. Turner, J. Cao, S. A. Jarvis, and G.
R. Nudd, “Application Characterisation Using a
Lightweight Transaction Model” , in Proc. 17th Annual
UK Performance Engineering Workshop, Leeds, UK, pp.
215-225, 2001.

[28] T. Suzumura, S. Matsuoka, and H. Nakada, “A Jini-
based Computing Portal System” , in Proc.
SuperComputing 2001.

[29] J. D. Turner, D. P. Spooner, J. Cao, S. A. Jarvis, D. N.
Dillenberger, and G. R. Nudd, “A Transaction Definition
Language for Java Application Response Measurement” ,
J. Computer Resource Management, January 2002.

[30] S. Verma, M. Parashar, J. Gawor, and G. von Laszewski,
“Design and Implementation of a CORBA Commodity
Grid Kit” , in Proc 2nd IEEE Workshop on Grid
Computing, 2001.

Biographies

Junwei Cao is currently a Research Assistant in the
Department of Computer Science at the University of
Warwick, UK. His research interests include resource
management for grid computing, performance evaluation
of parallel and distributed computing, multi-agent
systems and object-oriented system analysis and design.

He is now working on the project “Use of Performance
Prediction Techniques for Grid Management” , sponsored
by a grant from the NASA AMES Research Centre. He
received his PhD on Computer Science in 2001 from
Warwick and his thesis focuses on agent-based resource
management for grid computing. Before joining Warwick
in 1998, he was a research student in Tsinghua
University, P. R. China, and took part in the system
analysis, design and implementation of several projects,
using structural, object-oriented and agent-based methods
respectively. He received his BEng and MSc in 1996 and
1998 from Tsinghua. He is a member of the IEEE
Computer Society and the ACM.

Stephen A. Jarvis is a Lecturer in the Department of
Computer Science and member of the High Performance
Systems Group. He has over 20 publications (including
one book) in the area of software and performance
evaluation. Previously at the Oxford University
Computing Laboratory, he worked on performance
evaluation tools for a number of programming paradigms
including the Bulk Synchronous Parallel (BSP)
programming library – with Oxford Parallel and Sychron
Ltd. - and the Glasgow Haskell Compiler – with Glasgow
University, Durham University and Microsoft Research,
Cambridge. He is now working with IBM Hursley (UK)
and IBM Watson (US) on performance aspects of GRID
computing.

Daniel P. Spooner is currently a PhD student in the
Department of Computer Science at the University of
Warwick, UK and is a member of the High Performance
Systems Group. His primary research interests are in the
application of performance prediction techniques to
optimize wide-area resource scheduling in Grid
environments. Other interests include distributed network
management architectures and high performance web
services.

James D. Turner, is a final year PhD student in
Computer Science in the High Performance Systems
Group, University of Warwick, UK. His main research
areas include high performance Java and the
performance prediction and performance measurement of
distributed applications. This work is being used in a
scalable scheduling environment for GRID architectures,
an agent model for the discovery and advertisement of
distributed resources, and an environment for the
efficient routing of web service requests. His work has
contributed to the development of the ARM standard for
predicting the performance of applications, and using
such information to provide efficient resource allocation
dependant upon a number of QoS constraints.

Darren J. Kerbyson is with Los Alamos National
Laboratory. He is actively involved in modelling the
performance of tera-scale systems in the ASCI
programme. Before joining Los Alamos, he was a senior
member of staff in the Department of Computer Science
at the University of Warwick. His areas of interest
include techniques for performance prediction, large-
scale parallel and distributed processing systems, as well
as image analysis. He has published over 50 papers in

these areas over the last 10 years. Dr. Kerbyson is a
member of the ACM and the IEEE Computer Society.

Graham R. Nudd is Head of the High Performance
Systems Group and Chairman of the Computer Science
Department at the University of Warwick, UK. His
primary research interests are in the management and
application of distributed computing. Prior to joining
Warwick in 1984, he was employed at the Hughes
Research Laboratories in Malibu, CA.

