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Abstract 
 

Resource management constitutes an important 
infrastructural component of a computational grid 
environment. The aim of grid resource management is to 
efficiently schedule applications over the available 
resources provided by the supporting grid architecture. 
Such goals within the high performance community rely, 
in part, on accurate performance prediction capabilities. 

This paper introduces a resource management 
infrastructure for grid computing environments. The 
technique couples application performance prediction 
with a hierarchical multi-agent system. An initial system 
implementation utilises the performance prediction 
capabilities of the PACE toolkit to provide quantitative 
data regarding the performance of complex applications 
running on local grid resources. The validation results 
show that a high level of accuracy can be obtained, that 
cross-platform comparisons can be easily undertaken, 
and that the estimates can be evaluated rapidly. 

A hierarchy of homogeneous agents are used to 
provide a scalable and adaptable abstraction of the grid 
system architecture. An agent is a representative of a 
local grid resource and is considered to be both a 
service provider and a service requestor. Agents are 
organised into a hierarchy and cooperate to provide 
service advertisement and discovery. A performance 
monitor and advisor has been developed to optimise the 
performance of the agent system. A case study with 
corresponding experimental results are included to 
demonstrate the efficiency of the resource management 
and scheduling system. 

The main features of the system include: hard 
quality of service support using PACE performance 
prediction capabilities; agent-based dynamic resource 
advertisement and discovery capabilities; simulation-
based quantitative grid performance analysis and user-
oriented scheduling of local grid resources. 

 
 
1. Introduction 
 

It is anticipated that grid computing will deliver high 
performance computing capabilities and resource sharing 
among dynamic virtual organisations [13,14]. An 
essential component of grid infrastructure software is the 
service layer, which acts as middleware between grid 
resources and grid applications. This work considers the 
resource management service, which must efficiently 
map applications to available resources within a grid 
environment [20]. Such goals within the high 
performance community will rely on accurate 
performance prediction capabilities. 

An existing toolkit, known as PACE (Performance 
Analysis and Characterisation Environment) [23], is used 
to provide quantitative predictive data concerning the 
performance of complex applications running on a local 
grid resource. The framework of PACE is based on a 
layered methodology that separates software and 
hardware system components through the use of 
parallelisation templates. The PACE performance 
prediction capabilities have been validated using an 
ASCI (Accelerated Strategic Computing Initiative) 
kernel application called Sweep3D. This application 
illustrates the level of accuracy that can be obtained, that 
cross-platform comparisons can be easily undertaken, 
and that the process benefits from a rapid evaluation time 
[4]. While extremely well-suited for managing locally 
distributed multi-computers, PACE functions map less 
well onto a wide-area environment, where the process of 
resource management becomes far more complex. In 
order to meet the requirements of performance prediction 
for grid computing environments, both scalability and 
adaptability of prediction systems are two key challenges 
that must be addressed. 



• Scalability: A grid has the potential to encompass a 
large number of high performance computing 
resources. Each constituent of this grid will have its 
own function, its own resources and environment. 
These components are not necessarily fashioned to 
work together in the overall grid. They may be 
physically located in different organisations and may 
not be aware of each others capabilities.  

• Adaptability: A grid is a dynamic environment 
where the location, type, and performance of the 
components are constantly changing. For example, a 
component resource may be added to, or removed 
from, the grid at any time. These resources may not 
be entirely dedicated to the grid and therefore the 
computational capabilities of the system will vary 
over time.  

An agent-based methodology has been developed for 
the management of large-scale distributed systems with 
highly dynamic behaviours [6]. The system consists of a 
hierarchy of homogenous agents where each agent can be 
considered both a service provider and a service 
requestor. Multiple homogeneous agents are organised 
into federated groups, which have capabilities of service 
advertisement and discovery. Different optimisation 
strategies and performance metrics are defined and used 
to improve the agent behaviours. Issues related to the 
utilisation of an agent-based methodology for grid 
resource management is discussed in [5] and [7]. In this 
paper, an initial implementation of the agent-based grid 
resource management system is described. The agent acts 
as a local resource manager, using a user-oriented 
scheduling algorithm and coupled with PACE to provide 
predictive capabilities regarding local grid resources and 
the services they can provide. At a meta-level, agents 
cooperate to advertise and discover services. A case study 
and corresponding experimental results are included in 
this paper. The results demonstrate the effect of 
management and scheduling obtained through the 
cooperation of an agent system coupled with the PACE 
performance prediction tool. 

There are several solutions that currently address 
issues of grid resource management and scheduling. 
These include Globus [11], Legion [12], NetSolve [10], 
Condor [24], Ninf [22] and Nimrod/G [3]. While many 
of these projects utilise query-based mechanisms for 
resource discovery and advertisement [20], this work 
adopts an agent-based approach. The agent-based system 
allows agents to control the query process and make 
resource discovery decisions based on their own internal 
logic rather than rely on a fixed function query engine. 
The resource management system described in this work 
can provide hard quality of service (QoS) support as 

defined in [20]. However, unlike Nimrod/G, in which 
grid resource estimation is performed through heuristics 
and historical information, the performance prediction 
capabilities in this research are provided through PACE. 
In the Condor system, scheduling aims to maximise the 
utilisation of grid resources (resource-oriented); another 
approach, favoured by Nimrod and the research in this 
paper, is to provide a system which meets user specified 
deadlines (user-oriented). 

Several new grid projects utilise existing distributed 
computing technologies such as CORBA [26] and Jini 
[2]. CORBA is not designed for the development of high 
performance computing applications, however there has 
been research aimed at providing CORBA based tools in 
a variety of different contexts. For example, in the work 
described in [30] a CORBA Commodity Grid (CoG) Kit 
enables the development of advanced Grid applications 
which maintain state-of-the-art software engineering 
practices and also reuse existing grid infrastructure. 
However, such technologies only enable resource sharing 
within a single organisation [14]. In [15] a computational 
community that supports the federation of resources from 
different organisations is described; this system is 
designed and implemented in Java and Jini. JiPANG (A 
Jini-based Portal Augmenting Grids) [28] is a portal 
system and a toolkit that provides a uniform access 
interface layer to a variety of grid systems. This allows 
the development of Jini-based systems on top of the Java 
platform. 

Agent technologies have been used for the 
development of distributed software systems for several 
years [16]. An agent-based approach provides a clear 
high-level abstraction and a more flexible system 
implementation [17].  Multi-agent systems have recently 
been introduced in grid development and resource 
management. This work [18] includes a model for 
distributed awareness and a framework for the dynamic 
assembly of agents for the monitoring of network 
resources. An “Agent Grid”  is described in [25] that 
integrates services and resources for establishing multi-
disciplinary Problem Solving Environments (PSEs). 
Specialised agents contain behavioural rules and can 
modify these rules based on their interaction with other 
agents and with the environment in which they operate. 
The agent-based methodology used in this research can 
also be used for the integration of multiple services and 
resources. This is done using hierarchy of homogenous 
agents, rather than by utilising a collection of specialised 
agents. 

The agent-based system described in this work is 
investigated through quantitative performance analysis 
using modelling and simulation techniques. Other grid 
simulation models have been built: Simgrid [9] is a 



simulation toolkit for the study of scheduling algorithms 
for distributed applications; GridSim [21] investigates 
effective resource allocation techniques based on a 
computational economy. Grid performance modelling 
and simulation is a valuable tool, especially as current 
grid computing research has a limited number of 
practical grid environments and research test-beds with 
which to work [8].  

The paper is organised as follows: section 2 
introduces the PACE toolkit and corresponding 
methodology for performance prediction; in section 3, the 
system architecture and agent resource management 
system are described; a case study and experimental 
results are included in section 4; the paper concludes in 
section 5. 
 
2. Performance Prediction Using PACE 
 

The PACE performance prediction capabilities are 
essential to the system implementation. In this section 
the PACE toolkit, validation of the prediction capabilities 
and grid-enabling extensions are introduced. 
 
2.1 PACE Toolkit 
 

The main components of the PACE toolkit are 
shown in Figure 1; they include the application tools, the 
resource tools and an evaluation engine [23]. 
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Figure 1. The PACE Toolkit 
 

• Application Tools: A core component of this part of 
the toolkit is the performance specification language 
(PSL) which describes the performance aspects of an 
application and also its parallelisation. The Source 
Code Analyser is used to convert sequential source 
code components into performance descriptions. 
Users edit these descriptions using the object editor; 

existing objects can be retrieved from an Object 
Library. The performance descriptions are collated 
into application PSL scripts which are then compiled 
into an Application Model. This forms one of the 
inputs into the Evaluation Engine, which itself acts 
as a repository and analysis tool for the application-
level performance information. 

• Resource Tools: A hardware modelling and 
configuration language (HMCL) is used to define the 
computing environment in terms of its constituent 
performance model components. The Resource Tools 
provide several benchmarking programs to measure 
the performance of CPU, network, and memory 
aspects of hardware platforms respectively. The 
measurements are represented in HMCL scripts and 
combined to form a resulting Resource Model. This 
system-level performance information provides a 
second input to the Evaluation Engine.  

• Evaluation Engine: The evaluation engine is the 
kernel of the PACE toolkit. The Evaluation Engine 
executes completed performance models to produce 
evaluation results, these include time estimates and 
trace information relating to the expected application 
behaviour.  

Examples of the use of PACE include on-the-fly 
performance analysis for application execution steering 
[1], and dynamic multi-processor scheduling for efficient 
resource management [19]. 
 
2.2 Performance Validation 
 

The performance prediction capabilities of PACE 
have been successfully demonstrated using the ASCI 
kernel application Sweep3D [4]. The validation 
experiments are carried out on two high performance 
platforms: an SGI Origin 2000 multiprocessor and a 
cluster of Sun Ultra1 workstations. The validation results 
show that: 

• a good level of predictive accuracy can be achieved 
(the maximum predictive error is 20%, the average 
is approximately 10%); 

• performance evaluation is rapid (typically seconds of 
CPU use) for a given system and problem size; 

• from the results it is easy to obtain performance 
comparisons across different computational systems. 

It has been shown that the PACE system can produce 
reliable performance information which can then be used 
in the investigation of application and system 
performance. In [19] it is shown that performance data 
produced by PACE can be used for the management of 
parallel and distributed systems. The PACE toolkit was 



not however developed in the context of grid computing. 
In order to apply PACE to grid problems a number of 
modifications have been made. One of these 
modifications is the inclusion of transaction-based 
performance modelling. 
 
2.3 Transaction-based Modelling 
 

PACE operates by characterising an application in 
terms of its principle operations and its parallelisation 
strategy. It then couples these requirements with the 
hardware resources to obtain predictions of execution 
times. At present, costs are associated with individual 
machine level instructions which allows the toolkit to 
model detailed subtleties in an application code. This is 
considered too fine grained for grid applications and so 
variant of PACE is currently under development which 
uses ‘ transactions’  as base units of work [27]. 

Figure 2 shows the original PACE structure 
(depicted on the left) which describes applications by 
means of a layered modelling language. While 
maintaining the same structure, the coarse-grained 
PACE (on the right) utilises transactions and transaction 
maps to characterise applications more rapidly. An 
application is represented as a number of transactions 
each of which encapsulate key components of an 
application code; a transaction map describes the 
interrelationships between these transactions. 
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Figure 2. Coarse-grained PACE 

 
Transaction-based application modelling enables 

efficient remote performance evaluation and prediction to 
be performed. This makes the toolkit highly appropriate 
for use in dynamic grid-like environments which consist 
of a number of heterogeneous systems. The aim of this 
research is to enable this approach without sacrificing 
performance accuracy. The kernel of the system is 
defined in a transaction definition language (TDL); this 
is described in detail in [29]. 

 
3. Agent-based Resource Management 
 

An agent-based approach is used to integrate PACE 
functionality with grid resource management. In this 
section, both the overall architecture of the system and 
the structure of an individual agent are described. 
 
3.1 System Architecture 
 

An overview of the agent-based resource 
management architecture is il lustrated in Figure 3. The 
main components include grid users, grid resources, 
agents and a performance monitor and advisor (PMA). 
These are introduced in detail below. 
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Figure 3. System Architecture 
 
3.1.1. Grid Users 
 

There are different kinds of users of a grid 
computing environment. These include grid service and 
tool developers, application developers and grid end 
users. 

The developers of the tools, compilers, libraries, and 
so on implement the programming models and services 
used by application developers. MPI and PVM are 
included in these categories. Grid service and tool 
developers are a small group of grid users and are 
therefore not the main focus in the context of this work. 

Application developers comprise those who construct 
grid-enabled applications using grid tools. There are 
different kinds of grid applications: distributed 
supercomputing, high throughput, on demand, data 
intensive and collaborative applications. The applications 
described in this work mainly refer to scientific 



supercomputing applications; that is, large problems 
requiring a large amount of CPU and memory, etc., and 
which are (for the most part) written using MPI and 
PVM. 

Most grid users, like most users of computers or 
networks today, will not write programs. Instead, these 
end users will use grid-enabled applications that make 
use of grid resources and services. In some cases, 
application developers will also be the end users of the 
applications that they develop. The grid users in Figure 3, 
and mentioned in the following sections, are considered 
to be scientists, who develop scientific supercomputing 
applications and who use them to solve large problems in 
a grid context. 

The user-side software primarily includes the PACE 
Application Tools. When a parallel application is 
developed, a corresponding application model is also 
produced. PACE performance modelling is an automated 
process, targeted at the non-professional performance 
engineer. When an application is submitted for 
execution, an associated performance model should also 
be attached. 

Another component included in a grid request is the 
cost model, describing the user requirements concerning 
the application execution. This would include, for 
example, the deadline for the application to complete. 
Although there are a number of other metrics appropriate 
in this context, the current focus of this work is on 
execution time. 
 
3.1.2. Grid Resources 
 

A grid resource can provide high performance 
computing capabilities for grid users. A resource can 
include Massive Parallel Processors (MPP), or a cluster 
of workstation or PCs. A grid resource can be considered 
a service provider of high performance computing 
capabilities. 

In this system, PACE is used to create a hardware 
characterisation template that provides a model of each 
hardware resource. This characterisation is derived from 
computational and communication benchmarks which 
can be rapidly evaluated to provide dynamic performance 
data. The PACE hardware model is integral to the 
service information which is advertised across the agent 
hierarchy. 
 
3.1.3. Agents 
 

Agents comprise the main components in the system. 
Each agent is viewed as a representative of a grid 
resource at a meta-level of resource management. An 
agent can therefore be considered a service provider of 

high performance computing capabilities. Agents are 
organised into a hierarchy. The hierarchy of homogenous 
agents provides a meta-level view of the grid resources. 
The service information of each grid resource can be 
advertised in the agent hierarchy (both upwards and 
downwards); agents can also cooperate with each other to 
discover available resources. 

Each agent utilises Agent Capability Tables (ACTs) 
to record service information of other agents. An ACT 
item is a tuple containing an agent ID and corresponding 
service information.  

An agent can choose to maintain different types of 
ACTs according to different sources of service 
information. For example, T_ACT is used to record the 
service information of local resources. Each agent can 
also have one L_ACT to record the service information 
received from its lower agents and one G_ACT from the 
upper agent. C_ACT is used to store cached service 
information. 

There are two methods of maintaining ACT 
coherency - data-pull and data-push, each of which occur 
periodically or can be driven by system events. 

• Data-pull - An agent asks other agents for their 
service information either periodically or when a 
request arrives. 

• Data-push - An agent submits its service information 
to other agents in the system periodically or when 
the service information is changed. 

An agent uses the ACTs as a knowledge base. This 
is used to assist in the service discovery process triggered 
by the arrival of a request. Service discovery involves 
querying the contents of the ACTs in the order: T_ACT, 
C_ACT, L_ACT, and G_ACT. If an agent exhausts the 
ACTs, and does not obtain the required service 
information, it can submit the request to its upper agent 
or terminate the discovery process. 

The simple protocol of service advertisement and 
discovery described above allows agents to be configured 
with different strategies, leading to different agent 
behaviours. Agents advertise and discover services 
according to their own internal logic; this allows a 
flexible implementation of grid resource management. 

The PACE evaluation engine is integrated into each 
agent. Its performance prediction capabilities are used for 
local resource management in the scheduling of parallel 
applications over available local processors. The 
evaluation engine is also used to provide support to the 
service discovery process. 

The agent system bridges the gap between grid 
application users and grid resources. A introduction to 
the use of agent-based service discovery for grid resource 
management can be found in [7]. The agent hierarchy 



also allows scalability to be addressed. Service 
advertisement and discovery are processed stepwise 
between neighbouring agents only. This feature plays an 
important part in system scalability. Another important 
factor is the capacity for agents to be able to adjust their 
service advertisement and discovery behaviours, thus 
adapting to the highly dynamic grid environment. This is 
achieved through the introduction of a performance 
monitor and advisor. 
 
3.1.4. Performance Evaluation 
 

Performance issues arise from the dynamic nature of 
the grid resources. Unlike other work that focus on data 
representation and communication protocols, this 
research enables the performance of the agent system to 
be investigated quantitatively. Figure 3 shows the 
monitoring role of the PMA. The PMA observes agent 
communication traffic with the intention of improving 
agent performance. 

Unlike facilitators or brokers in classical agent-based 
systems, the PMA is not central to the rest of the agents. 
It neither controls the agent hierarchy nor serves as a 
communication centre in the physical and symbolic 
sense. If the PMA ceases to function, the agent system 
has no operational difficulties and continues with 
ordinary system behaviour. Efficiency improvements to 
the agent system are only made possible through the 
modelling and simulation mechanism built into the 
PMA. The PMA also avoids any one agent in the system 
becoming a single system bottleneck. 

The PMA is composed of a model composer and a 
simulation engine. Statistical data is monitored from 
each of the agents and input to the PMA for performance 
modelling. The performance model is processed by the 
simulation engine in the PMA so that new optimisation 
strategies can be chosen and the performance metrics 
improved. The process of simulation allows a number of 
strategies to be explored until a better solution is selected. 
The selected optimisation strategies are then returned 
and used to reconfigure the agents in the system. 

The metrics used to describe the performance of the 
agent system include the service discovery speed, the 
overall system efficiency, the load balancing and also the 
discovery success rate. Corresponding performance 
optimisation strategies include the use made of the ACTs, 
the limits placed on the service lifetime and the scope of 
advertisement and discovery, agent mobility and the 
service distribution. These features are not described in 
detail in this paper; for more information of these and 
other aspects of the system, see [5]. 
 
 

 
3.2. Agent Structure 
 

The structure of an agent - shown in Figure 4 - is 
divided into three component layers corresponding to 
communication, coordination and local management. 
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Figure 4. Agent Structure 
 

The communication layer of each agent performs 
communication functions and acts as an interface to the 
external environment. From the communication module, 
an agent can receive both service advertisement and 
discovery messages. It interprets the contents of each 
message and submits the information to corresponding 
modules in the coordination layer of the agent. For 
example, an advertisement message from another agent 
will be directly sent to the ACT manager in the agent 
coordination layer. The communication module is also 
responsible for sending service advertisement and 
discovery messages to other agents. 

There are four components in the coordination layer 
of an agent: the ACT manager, the PACE evaluation 
engine, a scheduler and a matchmaker. They work 
together to make decisions as to how an agent should act 
on the receipt of messages from the communication layer. 
For example, the final response to a service discovery 
message would involve application execution on the local 
resource or the dispatching of the request to another 
agent. 

The main functions of local resource management in 
an agent include application management, resource 
allocation and resource monitoring. Application 
execution commands are sent from the coordination layer 
to the local agent manager, these commands include the 
scheduling information for an application (start time, 
allocated processor ids etc). The Application 



Management part of the system is also responsible for 
managing the queuing of applications that have been 
scheduled to be executed on the locally managed 
resources. At the start time an application is dispatched 
to the Resource Allocation component. Resource 
allocation includes wrappers for different application 
execution environments including MPI and PVM; it is at 
this stage that the application is actually executed on the 
local scheduled processors. Another important 
component of local resource management is the resource 
monitoring. This is responsible for controlling the PACE 
benchmark programs which are executed on the local 
resource and from which corresponding resource models 
are dynamically created. The resource monitor is also 
responsible for communicating other resource and 
application information between the application 
management and resource allocation modules. It also 
coordinates all the collected information concerning local 
resource into service information which is then reported 
to the T_ACT in the coordination layer of the agent. 

These agent functions are described in detail below.  
In particular, the implementation of the agent 
coordination layer is emphasised and the four main 
components of the scheduling algorithm are documented. 
 
3.2.1. ACT Manager 
 

The ACT manager controls agent access to the ACT 
database, where service information regarding grid 
resources is located. Figure 5 illustrates the content of 
this service information. 
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Figure 5. Service Information 
 

Service information for a grid resource should 
include details of those aspects that have an impact on 
the performance of the resource and can therefore be used 
to evaluate its performance. Service information is 
therefore composed of resource information, application 
information, and the mapping between the applications 
and the resources. 

Consider a grid resource with n processors where 
each processor Pi has its own type tyi. A PACE hardware 
model can be used to describe the performance 
information of this processor: 

 
{ }P P i ni= =| , ,......,12  

{ }ty ty i ni= =| , ,......,12  

 
If m is the number of applications that are running, 

or being queued to be executed on a grid resource, then 
each application Aj has two attributes – a scheduled start 
time tsj and an end time tej. The applications of a grid 
resource can then be expressed as follows: 

 
{ }A A j mj= =| , ,......,12  

{ }ts ts j mj= =| , ,......,12  

{ }te te j mj= =| , ,......,12  

 
MAj is the set of processors that are allocated to 

application Aj:  
 

{ }MA MA j mj= =| , ,......,12  

{ }MA P l kj i jl
= =| , ,......,12  

 
where kj is the number of processors that are allocated to 
application Aj. M then is a 2D array, which describes the 
mapping relationships between resources and 
applications using boolean values. 
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3.2.2. PACE Evaluation Engine 
 

The request information consists of the PACE 
application model (am), which includes all performance 
related information of an application Ar. The 
requirements of the application are specified in a vector; 
this includes a number of metrics including the deadline 
for the execution of the application, treq. 

The PACE evaluation engine can produce 
performance prediction information based on the 
application model am and the resource information from 
the ACT manager, ty. Prediction data such as application 
execution time, exet, can be derived for the applications 
execution on the given resource. 

 
( )exet eval ty am= ,  

 



Rather than running the application on all processors 
for a given grid resource P, an agent can select an 
appropriate subset of processors P  (note that P  cannot be 
an empty set Φ), this is evaluated and expressed as 
follows: 

 

( )∀ ⊆ ≠ ⊆ ≠ =P P P ty ty ty exet eval ty am, , , , ,Φ Φ  

 
The output of the PACE evaluation engine, exet, forms 
one of the inputs to the scheduler of the agent. Another 
input to the scheduler is the application information from 
an ACT item. 
 
3.2.3. Scheduler 
 

An ACT item acts as a view of a grid resource that is 
remote to the agent. However, an agent can still schedule 
the required application execution based on this resource 
information. The function of the scheduler is to find the 
earliest time at which an application terminates on the 
resource described by the ACT item, tsched. 
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The application has the possibility of being allocated 

to any selection of processors on a grid resource. The 
scheduler should consider all these possibilities and 
choose the earliest end time of the application execution. 
In any of these situations, the end time is equal to the 
earliest possible start time plus the execution time, which 
is described as follows: 

 
te ts exetr r= + . 

 
The earliest possible start time for application Ar on 

a selection of processors is the latest free time of all the 
selected processors if there are still applications running 
on the selected processors. If there is no application 
currently running on the selected processors, application 
Ar can be executed on these processors immediately. 
These is expressed as follows: 
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where tdi is the latest free time of processor Pi. This 
equals the maximum end time of applications that are 
allocated to process Pi: 
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In summary, tsched can be calculated as follows: 
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It is not necessarily the case that scheduling all 

processors to an application will achieve higher 
performance. On the one hand, the start time of 
application execution may be earlier if only a number of 
processors are selected; on the other hand, with some 
applications, execution time may become longer if too 
many processors are allocated. 

The scheduling algorithm described above is used in 
an initial system implementation. The complexity of the 
algorithm is determined by the number of possible 
processor selections, which can be calculated as: 
 

C C Cn n n
n n1 2 2 1+ + + = −......  

 
It is clear that if the number of processors of a grid 

resource increases, the complexity of the local resource 
scheduling algorithm will increase exponentially. 
Though a local resource in grid environment can only 
have limited number of processors, this algorithm cannot 
scale well when the number of processors increases. 
Another factor is that the scheduling policy of this 
algorithm is to meet requirements from the user, instead 
of maximising the resource utilisation. There is no 
rescheduling process for previously scheduled 
applications. New algorithms need to be developed for 
such cases. 

The importance of the efficiency of the PACE 
evaluation engine is clear. During each scheduling 
process, the evaluation function can be called 2n-1 times. 
Even in the situation where all the processors of a grid 
resource are of the same type, the evaluation function still 
needs to be called n times. PACE evaluation can be 
performed very quickly to produce prediction results ‘on 
the fly’ ; this is a key feature in the use of PACE for grid 
resource management and in the provision of predictive 
QoS support for service discovery. 
 
3.2.4. Matchmaker 
 

The matchmaker in an agent is responsible for 
comparing the scheduling results with the user 
requirements attached to the request. The comparison 
results lead to different decisions on agent behaviours. 

In terms of application execution time, if treq ≥ tsched, 
the corresponding resource can meet the user 
requirement. If the corresponding ACT item is in the 
T_ACT, a local resource is available for application 



execution and the application execution command will be 
sent to the local management in the agent. Otherwise, the 
agent ID of the corresponding ACT item is returned, and 
the agent will dispatch the request to that agent via the 
agent ID. 

If treq < tsched, the corresponding resource cannot 
meet the requirement from the user. The agent continues 
to look up other items in the ACTs until the available 
service information is found. The agent can look up 
different ACTs in turn and in the case of there being no 
available service information in the ACTs, the agent may 
submit or dispatch the request to its upper or lower 
agents for further discovery. 

There may be many other metrics in the user 
supplied cost model and in this case the corresponding 
evaluation mechanisms should also be provided in each 
agent. Their implementation has parallels with the 
application execution time-based scheme and as a result 
is not discussed in further detail in this paper. 
 
4. A Case Study 
 

Experiments have been designed using the initial 
system implementation. There are two main parts in the 
design of the experiments. The system itself includes 
agents, resources and agent behaviour strategies used in 
the experiment. The automatic users of the system are 
also designed to send application execution requests with 
different frequencies, which add different workloads onto 
the system. Experimental results are also included to 
illustrate how the agent-based resource management 
system schedules applications onto available resources. 
 
4.1. System Design 
 

There are eight agents in the experimental system. 
The agent hierarchy is shown in Figure 6. 
 

 

S5 S7 S6 

S3 S2 S4 

S8 

S1 

 
 

Figure 6. Case Study: Agent Hierarchy 
 

The agent at the head of the hierarchy is S1, which 
has three lower agents: S2, S3, and S4. The agent S2 has 

no lower agents, while S3 and S4 have two lower agents 
each. 

Agents represent heterogeneous hardware resources 
containing sixteen processors per resource. As shown in 
Table 1, the resources range in their computational 
capabilities. The SGI multi-processor is the most 
powerful, followed by the Sun Ultra 10, 5, 1, and 
SparcStation in turn. 
 

Table 1. Case Study: Resources 
 

Agent Resource Type #Processors/Hosts 
S1 SGI Origin 2000 16 

S2 SGI Origin 2000 16 

S3 Sun Ultra 10 16 

S4 Sun Ultra 10 16 

S5 Sun Ultra 1 16 

S6 Sun Ultra 5 16 

S7 Sun SPARCstation 2 16 

S8 Sun SPARCstation 2 16 

 
In the experimental system, each agent maintains a 

set of capability tables - T_ACT, L_ACT and G_ACT. 
T_ACTs are maintained by the event-driven data-push 
service advertisement. L_ACTs are updated every ten 
seconds using a data-pull. G_ACTs are also updated by 
data-pull, at a frequency of every thirty seconds. All of 
the agents employ identical strategies with the exception 
of the agent at the head of the hierarchy (S1) that does not 
maintain a G_ACT. 
 
4.2. Automatic User 
 

The applications used in the experiments include 
typical scientific computing programs. Each application 
has been modelled and evaluated using PACE. An 
example of PACE predications for the system S1, which 
represents the most powerful resource in the experiment, 
can be found in Figure 7. The predictions for the other 
systems follow a similar trend and are therefore omitted. 

As shown in the figure, the run time of sweep3d 
decreases when the number of processors increases. At 
the same time the parallel efficiency also decreases. In 
fact, when the number of processors is more than 16, the 
run time does not improve any further. The results of the 
application improc show a different trend. Run time of 
improc decreases to an optimum of 8 processes – after 
which the run time then increases. Different applications 
have very different performance scenarios which has an 
important impact on the application scheduling results. 
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Figure 7. Case Study: Applications 

 
An application execution request for one of the seven 

test applications is sent at random to an agent. 
Additionally, the required execution time for the 
application is also selected randomly from a given 
domain; the bounds of the application requirements can 
be found in Table 2. 
 

Table 2. Case Study: Requirements 
 

Application Minimum 
Requirement (s) 

Maximum 
Requirement (s) 

sweep3d 4 200 
fft 10 100 
improc 20 192 
closure 2 36 
jacobi 6 160 
memsort 10 68 
cpi 2 128 

 
The automatic users are configured so that they send 

requests to the agents with different frequencies. As 
shown in Table 3, four experiments are designed with 
different system workloads. 
 

Table 3. Case Study: Workloads 
 

Experiment No. 1 2 3 4 
Minimum Request Interval (s) 1 1 1 1 
Maximum Request Interval (s) 7 5 3 1 
Average Frequency (s/app) 4 3 2 1 
Experiment Last Time (min) 7 7 7 5 
Total Application Number 109 149 215 293 

 
The interval of requests sent in each experiment is 

chosen randomly from a given domain, resulting in 

different average frequencies. Experiment No. 2, for 
example, lasts approximately 7 minutes; during this 
period, 149 requests are sent, that is one request sent 
every 3 seconds on average. The experimental results are 
discussed below. 
 
4.3. Experiment Results 
 

The experimental results can be found in Tables 4 
and 5. These illustrate the number of applications 
accepted by a particular agent in each experiment and 
also the number of service discovery steps required to 
meet the overall workload. Tasks can be rejected by the 
system (failed) if insufficient resources are available to 
meet the requirements of the user. 
 

Table 4.  Experiment Results: Application 
Execution 

 
Experiment Number 

1 2 3 4 
Agent 

No. % No. % No. % No. % 
S1 13 12 27 19 45 21 45 15 

S2 13 12 15 10 27 13 42 14 

S3 15 14 20 13 27 13 38 13 

S4 14 13 27 19 31 14 39 13 

S5 10 9 15 10 20 9 28 10 

S6 13 12 17 11 23 11 31 11 

S7 14 13 12 8 16 7 26 9 

S8 14 13 11 7 17 8 24 8 
failed 3 2 5 3 9 4 20 7 
Total 109 100 149 100 215 100 293 100 

 
Table 5. Experiment Results: Service Discovery 

 
Experiment Number 

1 2 3 4 
Step 

No. % No. % No. % No. % 
0-step 106 97 114 77 143 66 199 68 
1-step 3 3 24 16 38 18 29 10 
2-step 0 0 11 7 31 15 53 18 
3-step 0 0 0 0 3 1 12 4 
Total 109 100 149 100 215 100 293 100 

 
Experiment No. 1 

In this experiment, the system workload is light 
relative to the system capabilities, with an application 
request being sent every four seconds. This results in a 
balanced application distribution on the agents and the 
amount of requests that end unsuccessfully is small. 
Table 5 illustrates that 97% of service requests are 
completed with no service discovery. 



Experiment No. 2 
When the system workload becomes heavier, S7 and 

S8 cannot meet the computational requirements, and 
therefore submit the request to their upper agent S4. This 
leads to a 6% increase in workload on S4, and a 13% 
increase in the number of 1-step discovery requests. 
While heavily loaded, S1 is sufficiently powerful to serve 
19% of the total application requests. 
 
Experiment No. 3 

The system workload increases further. The 5% 
decrease of application executions on S4 indicates that the 
local resource of S4 has reached its capability.  Requests 
submitted from S7 and S8 are passed to S1, which leads to 
an 8% increase in the number of 2-step discovery 
processes. Service discovery amongst the agents becomes 
more active when the system workload increases. 
 
Experiment No. 4 

Experiment four represents a heavily loaded system. 
A decrease of 6% in accepted applications on S1 indicates 
that S1 has also reached its capacity.  This doubles the 
number of failed requests. The number of 1-step 
discovery processes decreases by 8%, while 2-step and 3-
step service discovery processes increase by 3%. This 
indicates that the whole system has reached its capability 
limit, resulting in more complex service discovery in 
order to find available resources. 

 
With the workload increasing, the trends for the 

distributions of application execution and service 
discovery are shown in Figures 8 and 9 respectively. 
Some generalised information can be concluded. 

Figure 8 illustrates that when the system workload 
increases, resources will reach their computational 
capabilities in turn. The more powerful a resource is, the 
later it reaches its limitation. The peaks appearing at the 
curves S1 and S4 indicate the time the corresponding 
resource reaches its limitation. 

Another interesting phenomenon is that the system 
workload is balanced when it is extremely light in 
experiment 1 and heavy in experiment 4. In experiment 1, 
this occurs as a result of averagely sent requests and the 
need for no service discovery, while in experiment 4, the 
distribution of applications over the eight systems is 
balanced according to the system capabilities. The agent 
load corresponds to the computing capabilities of the 
respective resource. The agents S1 and S2, which 
represent the most powerful resources in the 
experimental environment, serve a larger percentage of 
the applications, this is followed by S3, S4, S6 and S5. 
Only a small percentage of the requests are serviced by 
the agents S7 and S8. 

Figure 9 illustrates the trend in service discovery. As 
the system becomes more heavily loaded, the number of 
0-step discoveries decreases with a related increase in the 
number of 1-step processes. Similarly, as load increases 
further the number of 1-step processes decreases with a 
rise in 2-step discovery. In general, when the workload 
increases, more complex service discovery processes 
occur while simpler ones disappear. However, because 
the number of agents in the experimental system is small, 
no more complex (more than 4-step) service discovery 
processes occur. 
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Figure 9. Experiment Results: Trend II 

 
While this experimental system is far from a 

representative grid-sized environment, the experimental 
results demonstrate that the performance-driven agent-
based resource management, utilising service 
advertisement and discovery, is effective for scheduling 
applications that require grid-like distributed resources. 



 
5. Conclusions 
 

The use of performance prediction techniques for 
agent-based resource management in grid environments 
is presented in this work. An initial implementation of an 
agent-based resource management system is described. A 
case study is described in detail to demonstrate the 
efficiency of the resource management and scheduling 
capabilities of the system. The main features in this work 
include: 

• hard QoS support using the PACE performance 
prediction capabilities; 

• agent-based dynamic resource advertisement and 
discovery; 

• simulation-based quantitative grid performance 
analysis; 

• and user-oriented scheduling of local grid resources. 

Future work will focus on the system enhancement. 
Some existing standards, languages, tools and protocols 
can be utilised. For example, the agents and the PMA 
can be developed using Java and an XML format for data 
representation. An agent communication language 
(ACL) can be used to allow agents to communicate with 
each other at a higher-abstracted knowledge level. The 
system will also be integrated with current grid standard 
toolkit Globus. 
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