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Abstract—In recent years, the quiet and environmentally
friendly characteristics of electric vehicles (EVs) have made
them increasingly popular, driving the construction of charging
infrastructure. However, the large amount of charging access
and the promotion of fast charging technology have led to an
increasing total power demand for charging. If the charging
behavior of EVs is not regulated, it will inevitably affect the
stable operation of the power distribution network. This paper
proposes a charging recommendation method that considers the
voltage deviation of power distribution network nodes, keeping
the node voltage deviation within 10%. We formulate the problem
as a Markov Decision Process and solve it using a graph
reinforcement learning algorithm. The simulation results show
that our algorithm can maintain the voltage deviation within the
limits and improve the level of obtaining charging services.

Index Terms—charging recommendation, graph reinforcement
learning, power distribution network

I. INTRODUCTION

With the increasing global emphasis on environmental pro-
tection and sustainable development, electric vehicles (EVs)
are playing a crucial role in reducing carbon emissions and
promoting energy transition. As a result of the unprecedented
rapid development, EVs are experiencing a surge in popularity
due to the continuous technological advancements and gradu-
ally decreasing costs. This has not only transformed traditional
modes of transportation but also posed new challenges and
opportunities for energy systems, grid operation, and urban
infrastructure [1].

In the wave of EV popularization, the rapid growth of
charging demand has put significant pressure on the existing
power infrastructure. Especially during peak hours, charging
a large number of EVs simultaneously may cause the grid
to overload, affecting power quality and stability, and even
posing the risk of power outages [2]. At the same time, due
to the flexibility of charging time and charging place, by
conducting reasonable charging scheduling, the grid pressure
be effectively alleviated [3].

Existing studies that consider the impact of EV charging on
the power system can be divided into two categories. The first
category schedules EVs in the time dimension. Reference [4]
develops an actor-critic based charging algorithm to schedule
EVs in order to reduce peak load and lower charging costs. The
second category is known as charging recommendation, it will

dispatch EVs to different charging stations (CSs), and attract
more owners to charge in locations closer to distributed energy
by reducing electricity prices and other ways. Reference [5]
introduces a two-stage method for determining the optimal
path for EVs and managing their active and reactive power
within the distribution network. This method reduces the loss
cost of the distribution network and benefits the owners of
EVs. Reference [6] designs a smart grid system that allows
dynamic interaction between EVs / plug-in EVs and the grid,
thereby minimizing costs and preventing damage caused by
excessive loads. In [7], an online learning based algorithm
is proposed to solve the multi-stage Markov decision process
model, which greatly shortens the time of system convergence.
Reference [8] proposes a multi-objective system-level fast CS
recommendation method to dynamically assign EVs to suitable
CSs. Here, the average voltage deviation rate of each node is
regarded as one of the objective of optimization. Although
the aforementioned studies have considered the impact of EV
charging on the power system, the voltage deviation limits of
the distribution network has not been taken into account. If
EVs are concentrated at certain CSs, it may cause the node
voltage deviations in the distribution network to exceed the
limits, affecting the safe and stable operation of the distribution
network. Some studies [9], [10] have considered the limits
of voltage deviation, but they all achieve this by shifting
the charging demand to other times, lacking research on
maintaining voltage deviation within limits by recommending
EVs to charge at different CSs.

All the previous research has provided corresponding solu-
tions for charging guidance and control scenarios. However,
in scenarios where EVs have a high penetration rate, EVs
with charging demands must be promptly allocated to avoid
disrupting subsequent EV guidance processes. Additionally,
to cater to the urgent need for charging, guidance strategies
need to respond to user demands online within dynamic and
complex environments. Traditional optimization algorithms
or heuristic methods often suffer from low computational
efficiency, making it challenging to meet the real-time re-
quirements of a large number of EVs. Reinforcement learning
(RL), on the other hand, does not require an explicit model.
It can acquire effective strategies through interactions with
the environment and continuous learning from relevant expe-



riences and has been proven suitable for complex sequential
decision-making problems, such as charging recommendation
[11]. To this end, this paper addresses the issue of node voltage
deviation from the limit values in the distribution network by
utilizing charging recommendations from the perspective of
reinforcement learning.

The rest of this paper is organized as follows: Section
II introduces the problem we are studying. Section III first
formulates the problem as a Markov Decision Process and then
introduces the reinforcement learning methods used. Section
IV is an analysis of the simulation results. Section V is the
conclusion.

II. PROBLEM FORMULATION

In our charging recommendation scenario, the entities in-
volved include: EVs, CSs, the power distribution network,
and the intelligent traffic center. All CSs within a certain
area are powered by the power distribution network. If an
EV traveling in that area has a SoC lower than the threshold
during its journey, the driver will send a charging request to
the intelligent traffic center. After receiving the request, the
intelligent traffic center, considering the operation states of the
EV, CSs, and power distribution network, recommends a CS
for the EV. Subsequently, the EV follows the recommendation,
charges at the CS for a certain period, and then continues on
to its destination.

However, the rapid growth in the number of charging
infrastructures and the widespread adoption of fast charging
technology have posed unprecedented challenges to the stable
operation of the power distribution network.

Let the active power for each EV charging be denoted as
P ch, and the corresponding reactive power be denoted as Qch.
The relationship between the two is:

Qch =
√
(P ch/ cosφ)2 − (P ch)2 (1)

where cosφ is power factor.
The total active power for CS i at time t is:

Pi,t = P ch(Np
i −N

i
i,t) (2)

where Np
i represents the number of charging piles at CS i,

N i
i,t indicates the number of idle charging piles at CS i at

time t.
At time t, there is the following relationship between the

power at node i of the distribution network and the voltage:

Pi,t = Vi,t

n∑
j=1

Vj,t(Gij cos θij,t +Bij sin θij,t) (3)

Qi,t = Vi,t

n∑
j=1

Vj,t(Gij sin θij,t −Bij cos θij,t) (4)

where n is the total number of nodes, and Pi,t and Qi,t

are the active power and reactive power at node i at time
t, respectively, Vi,t is the voltage magnitude at node i at time
t, θij,t is the voltage phase angle difference between nodes

i and j at time t, and Gij and Bij are the conductance and
susceptance between nodes i and j, respectively.

It can be seen from the above equation that the number of
charging vehicles will affect the node voltage of the distribu-
tion network. The unregulated charging behavior of EVs leads
to an imbalance in load among various CSs, exacerbating this
issue. Therefore, when making charging recommendations,
our main goal is to ensure the stable operation of the power
distribution network and to keep the voltage deviations of the
nodes connected to the CSs within a certain range, that is:

Vmin ≤ Vi,t ≤ Vmax,∀i ∈ {1, 2, · · · , nCS},∀t (5)

where Vi,t represents the voltage of node i in the power
distribution network at time t, Vmin and Vmax are the upper
and lower bounds of the set voltage deviation, and the total
number of CSs is nCS.

Although simply directing vehicles to CSs that are already
in a queue can delay charging demands and prevent voltage
deviations from exceeding the specified values, the long wait
for charging services can also render the charging recommen-
dation meaningless. Therefore, the charging recommendation
should, under the premise of ensuring the stable operation of
the power distribution network, make full use of idle charging
piles to provide charging services for EVs.

III. METHODOLOGY

A. Formulation of Markov Decision Process

State space S: The state of the environment at step t
is denoted as st. When there is no charging request at a
certain moment, it is considered as a state. When there are
Nt charging requests at the actual moment t, each charging
request is regarded as a state. Therefore, the subscript t in st
refers to the environment step, not the actual time.

There is a significant delay between making a charging
recommendation and the EV starting to charge. To reflect
the node voltage when the EV is connected to the charging
pile and to mitigate the impact of the delay on the agent,
we use the estimated node voltage upon the vehicle’s arrival
rather than the current node voltage. When estimating the node
voltage, we consider the worst-case scenario, where vehicles
that requested charging before the current EV will arrive at
the CS earlier than it. Upon the vehicle’s arrival at the CS, the
estimated active power of the vehicles currently charging is:

P t = min{Np,NEV
t +Np −N i

t} · P ch (6)

where Np represents the number of charging piles at each CS,
bold symbol means it’s a vector. NEV

t represents the total
number of EVs that are about to go to each CS and those
already queuing at the CSs at time t, N i

t indicates the number
of idle charging piles at each CS at time t, and pch denotes
the charging power.

Additionally, the agent should also be aware of the utiliza-
tion status of each CS, in order to recommend vehicles to
underutilized CSs when congestion occurs at some stations.



The indicator reflecting the utilization of CSs is defined as
follows:

Nu
t = (NEV

t −N i
t)
/
Np (7)

The state is defined as follows:

st =


[
0.1,−0.1,1

]
, no request[

− 0.1,V − 0.9,Nu
t

]
, otherwise

(8)

where V is the voltage (per unit) of the nodes connected to the
CSs, which can be calculated by (1), (3), (4) and (6). Since we
want to keep voltage deviation within 10%, the voltage was
uniformly reduced by 0.9.

Action space A: The action space includes an action of
making no recommendations and actions recommending to
each CS. The action at time t is denoted as at.

Reward function R: The reward function consists of two
parts: one part reflects the impact of the recommendation re-
sults on node voltage, denoted as rvol, the other part represents
the utilization of the charging piles, denoted as rutil.

When EVs head to the recommended CS for charging, there
may be situations where the voltage of the node connected to
the recommended CS is already lower than the threshold upon
the vehicle’s arrival. Besides, since each CS is connected to
the same power distribution network, the voltages of the nodes
will affect each other. After a vehicle starts charging at the
recommended CS, it may cause some nodes connected to the
CSs to first fall below the threshold voltage or further decrease
the voltage of the nodes that were already below the threshold.
All of the above situations should be avoided when making
recommendations, so the reward should be negative in these
cases, and rvol is defined as:

rvol =


−10, V [at] ≤ 0.9
−10, V ′[V ≤ 0.9] < V [V ≤ 0.9]
−10, len(V ≤ 0.9) < len(V ′ ≤ 0.9)
0, otherwise

(9)

here, V ′ represents the estimated node voltages after current
EV is added to NEV

t .
To improve the utilization rate of charging piles, a higher

reward should be given for choosing CSs with lower predicted
utilization rates when vehicles are estimated to arrive, so the
reward rutil is defined as:

rutil =

{
0, no request
−Nu

t [at], otherwise (10)

B. Graph Reinforcement Learning Algorithm

We utilize the reinforcement learning algorithm named
Dueling DQN(λ), which is the same as the one used in our
previous work [12].

However, for the problem studied in this paper, the topology
of the distribution network is known, and the network structure
used in our previous work cannot take advantage of this
information. Therefore, based on [12], we have made certain
modifications to the algorithm. Inspired by [8], we use multi-
head graph attention layers instead of full connected layers to

transform the voltage components in the state. The transformed
features are defined as follows [13]:

h′
i = σ

( 1
K

K∑
k=1

∑
j∈Ni

αk
ijW

khj

)
(11)

where K represents the number of heads in multi-head at-
tention, Ni represents the neighboring nodes, αk

ij represents
the attention coefficient between the current node i and the
neighboring node j, W k is the weight matrix, and σ is the
activation function.

The attention coefficient includes the relationships between
adjacent nodes, so the transformed features utilize the topo-
logical structure of the power distribution network, aggregate
information from adjacent nodes, and reflect the interdepen-
dent relationship between node voltages.

IV. SIMULATION

A. Scenario and Parameter Settings

To validate the effectiveness of the algorithm, we employ
the SUMO simulation platform to emulate the driving behavior
and charging process of EVs. It offers a TRACI interface,
enabling us to obtain traffic information in real-time and
direct vehicles to specific CSs. Additionally, we utilize the
pandapower module to perform power flow calculations, form-
ing an integrated transportation-power simulation environment
with SUMO. The algorithm is implemented using Python-
PyTorch and is executed on an Ubuntu server.
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Fig. 1. Joint transportation-power simulation scenario.

An area in Beijing is utilized as the simulation road network,
equipped with four CSs that have a limited number of charging
piles, all of which are powered by the distribution network. A
modified IEEE 33-node distribution network model is adopted



in our simulation scenario. CS 1 to CS 4 are connected to node
6, 25, 26, and 8 of the distribution network, respectively, with
power factors of 0.7, 0.65, 0.71, and 0.88. It is assumed that
the voltage at each node connected to the CSs must not be
lower than 0.9 UN . The simulation scenario is shown in Fig.
1. The battery capacity of all EVs in the road network is set
to 20 kWh, with an average power consumption of 10 kW
during travel. We design a high-load scenario where trips are
generated every 0.84 seconds with random starting points and
destinations. Before departure, the EVs have a certain initial
battery capacity, with the SoC uniformly distributed between
0.2 and 0.4. During the journey to the destination, once the
SoC of the EV drops to a threshold (uniformly distributed
between 0.14 and 0.17), the driver issues a charging request
and proceeds to the recommended CS by the algorithm for a
10-minute charge before continuing the trip.

B. Simulation Results

1) Validation of graph reinforcement learning algorithm:
We utilize 10 random seeds to compare the average returns
of our algorithm, which incorporates graph attention layers,
against the algorithm that does not employ graph attention
layers (it uses conventional Multilayer Perceptron instead).
The results across the training process are illustrated in Fig.
2.
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Fig. 2. The average return curves of the two algorithm.

From Fig. 2, it can be observed that although the two
algorithms exhibit similar performance in the early stages of
training, the algorithm without graph attention layers experi-
ences a decline in performance in the later stages of training,
while the algorithm with graph attention layers maintains
stable performance. Fig. 3 shows the results after excluding the
random seed 60, where the performances of the two algorithms
are comparatively close. The reason for this outcome is that re-
inforcement learning algorithms are sensitive to random seeds,
and under certain seeds, the algorithm may fail to converge.
The use of graph attention layers, however, fully leverages the
prior knowledge of the power distribution network topology,
thereby making the algorithm more robust. Note that the 10
random seeds used here are not carefully selected but are
evenly spaced within the range of 10 to 100.
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Fig. 3. The average return curves of the two algorithm (excluding random
seed 60).

2) Validation of the effectiveness in avoiding voltage con-
straint violations : We compare the model trained in IV-B1
with the distance greedy method and the random CS selection
method. The results are shown in Fig. 4. From Fig. 4a and Fig.
4b, it can be found that without effective measures, the voltage
at some nodes may drop below the pre-set threshold due to
excessive electrical load, which is detrimental to the safe and
stable operation of the power distribution network. Our method
estimates the worst-case voltage deviation when vehicles arrive
at CSs and recommends CSs for EVs accordingly, thereby
avoiding violations of node voltage constraints.

3) Validation of the effectiveness in enhancing charging
pile utilization rates: We compared two methods: one that
considers only voltage constraints in the reward function
(denoted as Method I) and another that takes into account
both voltage constraints and CS utilization rates (denoted as
Method II). The results are shown in Fig. 5, where the power
at each CS is used to reflect the utilization of the charging
piles.
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Fig. 5. Power heatmap under two different reward function.

From Fig. 5, it can be observed that when only voltage
constraints are considered, the policy learned by the algorithm
simply recommends vehicles to go to CS 2 and CS 3, which
are already in queue, to delay charging access and avoid
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(a) Random selection method
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(b) Distance greedy method
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(c) Our method

Fig. 4. Voltage curves under different methods.

violating voltage constraints. However, when the utilization
rate of charging piles is taken into account, the algorithm
can identify the idleness of CS 1 and utilize it to serve EVs
without violating voltage constraints. Therefore, our algorithm
is effective in enhancing the utilization rate of charging piles.
It should be noted that since the voltage deviation of CS 4 is
relatively high even without additional charging load, to avoid
violating voltage constraints, its utilization rate remains low
in both cases.

V. CONCLUSION

This paper design a graph reinforcement learning based
EV charging recommendation algorithm to address the issue
of voltage deviation exceeding limits at power distribution
network nodes, while also considering the utilization rate of
charging piles. The results show that using graph attention
layers can fully leverage the topological information of the
power distribution network, thereby enhancing the robustness
of the reinforcement learning algorithm. Moreover, compared
to distance greedy and random selection algorithms, our al-
gorithm can maintain voltage deviations within the specified
limits. Finally, the design of the reward function considering
the utilization rate of charging piles has improved the level of
timely charging services for EVs. When deploying in practice,
it is necessary to improve the design of the state space and
reward function to reduce unnecessary power flow calculations
and speed up response times, which will also be the focus of
our future work.
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