
In Proceedings of 18th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2004), Santa Fe, New
Mexico, USA, April 2004, 8 pages.

Queue Scheduling and Advance Reservations with COSY
Junwei Cao and Falk Zimmermann

C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany
 {cao, falk}@ccrl-nece.de

Abstract

Most of current job scheduling systems for

supercomputers and clusters provide batch queuing
support. With the development of metacomputing and
grid computing, users require resources managed by
multiple local job schedulers. Advance reservations are
becoming essential for job scheduling systems to be
utilized within a large-scale computing environment with
geographically distributed resources. COSY is a
lightweight implementation of such a local job scheduler
with support for both queue scheduling and advance
reservations. COSY queue scheduling utilizes the FCFS
algorithm with backfilling mechanisms and priority
management. Advance reservations with COSY can
provide effective QoS support for exact start time and
latest completion time. Scheduling polices are defined to
reject reservations with too short notice time so that
there is no start time advantage to making a reservation
over submitting to a queue. Further experimental results
show that as a larger percentage of reservation requests
are involved, a longer mandatory shortest notice time for
advance reservations must be applied in order not to
sacrifice queue scheduling efficiency.

1. Introduction

Scheduling of parallel jobs on supercomputers and
clusters has been an active research topic in the high
performance computing community for over ten years [5].
Most current scheduling systems provide batch queuing
support. One of the basic queue orders is first-come-first-
served (FCFS), in which jobs are ordered by the arrival
time. The backfilling technique is proven to be effective
to improve scheduling performance with minor
drawbacks and thus widely used.

With the development of metacomputing [11] and
grid computing [7], users require access to multiple
resources that may be distributed geographically. In
general, a user would like to reserve all of the resources
in advance for a distributed application so that
corresponding quality of service (QoS) requirements can
be guaranteed, e.g. the execution time.

COSY is a lightweight implementation of such a
local job scheduler with plugs into SCore [19] and NEC
MPI [12] environments. The current COSY
implementation supports both queue scheduling and
advance reservations. The COSY queue scheduling is
accompanied by an aggressive backfilling mechanism
that attempts to allocate currently unutilized nodes to
jobs behind in the priority queue of waiting jobs without
possible delaying the head of waiting jobs. Advance
reservations with COSY can be used to guarantee an
exact job start time or latest completion time. Users can
query about a reservation and confirm it later within a
period of time. The two phase commitment is designed
for COSY to be utilized in a metacomputing or grid
computing environment with QoS negotiation
requirements.

When queue scheduling is combined with advance
reservations, users especially with lower priorities may
utilize advance reservations to gain start time advantages.
If a user finds that an advance reservation can lead to an
earlier job start time than submitting to the queue, he
may choose to make reservations even though there is no
explicit QoS requirements associated to the job. In a
commercial environment, this can be prevented by
charging more to advance reservations. In an academic /
research environment, this has to be solved by applying
proper scheduling policies.

In the COSY scheduler described in this work, the
issue is addressed by applying a shortest notice time for
each reservation. Only if the notice time is longer than
the threshold can a reservation be accepted. The shortest
notice time for a reservation is defined using the
predictive wait time as if the reservation were submitted
as a queue job. The prediction is based on historical
information and defined using the mean wait time of
queued jobs.

Experiments are designed in this work using a
representative workload, which is generated using the
Cirne and Berman archive [3] of parallel workload
models included in [4]. Experimental results show that
the existence of advance reservations still prolongs the
queue wait time even though no start time advantages are
taken. A longer shortest notice time must be applied for
advance reservations in order not to sacrifice the queue

efficiency. The more advance reservations are involved,
the longer notice time constraint should be applied.

There are many other job scheduling systems,
including Catalina [2], Condor [17], EASY [16],
LoadLeveler [20], LSF [25], Maui [14], PBS [13], SGE
[24], STORM [8] and Titan [23]. A good survey on the
status of support for advance reservations within existing
scheduling systems can be found in [18]. Features of
several current systems that support advance reservations
are summarized in this document, such as LSF, PBSPro,
Maui, Catalina and SCAI/EASY. COSY is a lightweight
implementation with essential job scheduling
functionalities. COSY is most similar to the SCAI/EASY
scheduler and currently does not have some advanced
features, e.g. re-negotiation in Maui and web service
interfaces in LSF.

Two most related work can be found in [21] and [22]
in which the impact of advance reservations on queue
scheduling is also investigated. In the simulation study
described in [21], the percentage of queue jobs that can
be delayed by a reservation request is taken as the
parameter to decide whether the reservation can be
accepted, while the mean wait time of queued jobs is
utilized in our work. An advance reservation that can not
be satisfied at the submission is arranged at the closest
available time in [21] and rejected in our work. There is
no system implementation associated with the simulation
study included in [21], while our experiments are all
carried out using the COSY implementation. The
simulation study included in [22] is carried out using the
Maui implementation. The work concludes that as the
percentage of advance reservations increases, the overall
resource utilization declines, which is also observed in
our work. COSY provides solutions to satisfy advance
reservations as far as possible without taking start time
advantages and reducing queue scheduling efficiency,
which is not focused in other work.

The rest of the paper is organised as follows: Section
2 introduces the COSY implementation briefly; in
Section 3, the COSY scheduling issues are discussed in
detail; experimental results are included in Section 4 and
the paper concludes in Section 5.

2. COSY Structure

The COSY system implementation includes a front-
end scheduling daemon and node daemons. Daemons are
implemented using C++ that perform job scheduling and
execution. Both command line user interfaces (in C++)
and web-based GUIs (in Java) are provided. The COSY
functional structure are illustrated in Figure 1 and
described below respectively.

Figure 1. The COSY Structure

• User Interfaces. COSY provides several generic user
interfaces for submitting a job, releasing a job and
querying about job status and information. For those
users who do not want to interact directly with the
scheduling system, the COSY structure allows an
implicit scheduling implementation. In this situation,
users run parallel programs using specific user
interfaces as if no scheduler were sitting in the
middle. Generic user interfaces are called implicitly
so that the execution can go through COSY and
finally reach the corresponding plugin script.
Currently COSY only provides implicit job
scheduling for SCore and NEC MPI runs, and the
structure allows straightforward integration with
other environments in future.

• Job Scheduling. COSY scheduling algorithms and
polices are described in detail in Section 3. The
scheduling is performed with support of several other
modules. When the scheduling daemon is started up,
basic configurations on queues and resources are
loaded from a predefined XML file. Resource
monitoring is carried out periodically to check node
availability so that the scheduler can adapt to the
scheduling space dynamically. Scheduling processes
are logged and all information is restored in database.
In case the scheduling daemon fails accidentally,
errors can be traced and user requests can be
recovered with log and database support.

• Job Execution. COSY supports both batch and
interactive jobs. COSY job execution is guided by the
scheduling information and responsible for actual
assigning / releasing node access to the
corresponding user when a job is started / finished.
For batch jobs, COSY calls batch scripts on behalf of
the user. COSY takes care of the batch job execution
by releasing resources for early completed jobs and

Operating Systems, MPI Environments, …

Users

Resources

User Interfaces

Job
Scheduling

Log Management

Resource Monitoring Database Management

Configurations

Job Execution

Plugin Scripts

Specific User Interfaces

terminating uncompleted jobs when scheduled end
time arrives.

• Plugin Scripts. COSY has to adapt to different
parallel program execution environments. This is
implemented by writing specific shell scripts to
interface the COSY job execution to different
environments. These scripts are specified implicitly
in corresponding specific user interfaces as
parameters of generic COSY submission.

While the COSY system implementation is
introduced briefly above, this work focuses more on the
scheduling algorithms and policies, especially when both
queue scheduling and advance reservations are involved.

3. COSY Scheduling

COSY is a lightweight implementation of job
scheduling systems with essential functionalities.
Features of queue scheduling and supports for advance
reservations in COSY are summarized in this section
respectively.

3.1 Queue Scheduling

Queue scheduling with COSY is based on the first-
come-first-served algorithm with aggressive backfilling
mechanisms and includes following features:

• Flexible node selection. Apart from the number of
nodes, COSY provides users with additional ways for
node selection. Users can provide the list of preferred
or disallowed nodes when submitting a job. In case
nodes are heterogeneous they can be classified in
COSY to different node sets. COSY allows users to
specify preferred node sets so that nodes are firstly
selected from given node sets. The XML
configuration file includes all information of nodes
and node sets. Flexible node selection is also applied
to advance reservations.

• Multiple queues & queue priority. COSY job
scheduling can support multiple queues with
different priorities. A job submitted to a queue with a
higher priority will be executed first (without
backfilling). Job priority, resource limitation and
access control are all defined within each queue and
specified in the XML configuration file. For example,
if a COSY job scheduler is configured with a day
queue and a night queue and day has a higher
priority than night, only after all jobs submitted to
day are finished can jobs at night be executed. COSY
allows different policies for different queues.

• User priority. Job priorities are associated with
corresponding users. User priorities include four
levels: prefer, allow, defer, and deny. Jobs are
ordered within each queue according to user
priorities. A user can have different priorities in
different queues. For example, an external user may
be deferred in day and preferred at night.

• Resource limitation. Resources allocated to one job
can be limited in each queue. For example, the
maximum time allocated to one job can be 1 hour in
the day queue and 4 hours in the night queue so that
users are encouraged to submit large batch jobs to
night and allow more small and emergent jobs to be
executed in day. Resource limitation also indicates
memory and disk sizes of nodes so that a job that
requires too much memory and disk can be rejected
immediately.

• Access control list. Each queue is configured with a
list of users or groups with different priorities. If a
user submits a job to a queue without the access
control authorization, the job will be rejected
immediately.

• Batch and interactive support. COSY allows users to
submit unlimited number of batch jobs but only one
interactive job at one time. Advance reservations are
only allowed to be submitted as batch jobs currently
in COSY.

3.2 Advance Reservations

Advance reservations with COSY provide QoS
supports of job execution. This is especially useful in a
metacomputing or grid computing environment, where
users or applications require coordinating multiple
related jobs at multiple sites.

• Exact start time. Advance reservations in COSY are
currently not associated with any priority
management. COSY may accept a reservation or
reject it immediately. COSY can guarantee an
accepted advance reservation to be started exactly at
the scheduled start time. This means a scheduled
reservation will not be changed due to queue jobs.

• Latest end time. Sometimes users may require COSY
to meet a deadline before which the job must be
finished. The job is scheduled to be completed
exactly at the deadline (rejected if not possible) and
later may be rescheduled to earlier possible nodes.

• Two phase commitment. Some applications in a
metacomputing or grid computing environment
include QoS negotiation processes. An application
may book resources for a job at multiple sites
simultaneously and finally confirm one of them with

the best QoS support. In this situation, local job
schedulers are required to support the two phase
commitment, which is implemented in COSY by
introducing an additional parameter when a
reservation request is submitted. In a default mode,
an advance reservation is booked and confirmed
immediately if accepted. With the additional
parameter, users can choose to book a reservation
and confirm it later. If a reservation is not confirmed
within a certain period of time, say 5 minutes, COSY
will release the schedule automatically without
actual execution.

When advance reservations are implemented in a
queue scheduling system, it is obvious that users will
soon find that advance reservations can be utilized to
take start time advantages. This could result that advance
reservations are abused and all policies for queue
scheduling would make no sense. In a commercial
environment, this can be avoided by charging more to
advance reservations. In an academic / research
environment, necessary scheduling polices should be
applied. We currently focus on the latter situation.

4. Performance Evaluation

Experiments introduced in this section for
performance evaluation of different scheduling policies
are driven by solving the following problems:

• Problem I. How to prevent advance reservations
from taking start time advantages over queued jobs
in an academic / research environment?

• Problem II. How to satisfy advance reservations as
far as possible without sacrificing queue efficiency,
e.g. increasing wait time of queued jobs?

4.1 Performance Metrics

COSY scheduling performance is evaluated using
the following metrics in our experiments:

• Mean wait time. The average amount of time that
jobs have to wait before being executed.

• Resource utilization. The average percent of node
time that is utilized by jobs.

• Rejection rate. The ratio of the number of advance
reservations that are rejected to that of all jobs
involved during a certain period of time.

The mean wait time can be applied to both queued
jobs and advance reservations and we are particularly
interested in the interaction between them. Resource
utilization is a common performance metrics that is also

used in other job scheduling research, e.g. [21] and [22].
The advance reservation model in our work is different
from that described in [21]. Since COSY allows rejection
of advance reservations, the rejection rate has to be
considered in performance evaluation of the COSY
scheduling.

4.2 Workload Model

A representative workload is important to evaluate
job scheduling algorithms and policies. Too light or
heavy workload may result into a situation where impact
of different policies cannot be observed.

In this work, the workload used for all the
experiments is the same and generated by the Cirne
Comprehensive Model [3] using the Argonne National
Laboratory (ANL) arrival pattern. The resource model is
a 32-node cluster. For each experiment, 100 requests are
generated that represent over one week’s actual operation
time. The submission time, required time and number of
nodes are retrieved from the generated workload file for
each COSY request. COSY runs in normal mode with
job execution disabled. In order to reduce experiment
time, both request intervals and required time are
reduced by 180 so that experiments can be accelerated
without destroying the workload pattern and COSY can
still support the reduced time granularity. Experiments
are also simplified by assuming that only one queue is
supported, all users have the same priority, two phase
commitment for advance reservations is not involved, all
nodes are homogeneous and belong to one node set.

4.3 Experiment Design

The scheduling policy investigated to solve Problem
I in COSY is to apply a shortest notice time for each
reservation request. Only if the notice time is longer than
the threshold can a reservation be accepted. Since the
impact of advance reservations on queue efficiency is
evaluated using the mean wait time of queued jobs, this
statistics can be feedback to COSY for the runtime
configuration of the notice time constraint for each
reservation. The main advantage is the decision making
whether a reservation should be accepted or not can
adapt to the workload of queued jobs in real time. For
example, if the system load is very low, i.e. there are
practically no jobs waiting in the queue, it is meaningless
to make notice time constraints for reservation requests.
On the other hand, if the queue is very long, advance
reservations should be also postponed accordingly. The
drawback is that the statistics have to be recalculated
every time the COSY scheduling daemon receives a
reservation request.

The implementation of the scheduling policy
described above is straightforward in COSY. During
each experiment, we randomly turn a certain percent of
jobs into advance reservations. The exact start time of
each reservation request equals to the shortest notice time
plus the submission time. Note that the configuration
guarantees that a reservation request will not be rejected
directly due to the COSY shortest notice time constraint,
but still cannot guarantee that all advance reservations
can be accepted and scheduled, since resource
requirements of different advance reservations are still
possible to conflict with each other, which would result
in rejections of later arriving requests.

Experimental results described later in this paper
and those included in [21] show that though advance
reservations do not take start time advantages, the
existence of advance reservations still influences the
queue efficiency. Further scheduling policies are required
to solve Problem II. More experiments are designed to
investigate whether the mean wait time of queued jobs
can remain the same as if there were no advance
reservations by applying a longer shortest notice time for
each reservation request. This results that the mean wait
time of advance reservations will be longer than that of
queued jobs so that postponing advance reservations can
compensate the loss of queue efficiency and result in a
shorter queue wait time.

In summary, each experiment is carried out using
the same workload with two parameters configured:

• Percentage of advance reservations (p). The
percentage of advance reservations is increased from
5% to 20%.

• Shortest notice time of advance reservations (n).
This is represented as times of the mean wait time of
queue jobs. This can also be calculated as the ratio of
mean wait time of advance reservations (wa) to that
of queue jobs (wq) after experiments, because all
advance reservations are configured with an exact
start time that just meets the notice time constraint.
During each experiment, this parameter is
predefined approximately as 1, 2, 3, 4 … and refined
using statistical results. Given a certain p, n is
increased to reach a value when the corresponding
notice time constraint can lead to the mean wait time
of queued jobs that is as short as if there were no
advance reservations.

After each experiment, three metrics are evaluated:

• Relative mean wait time of queued jobs (q). This is
calculated using the mean wait time of queued jobs
(wq) divided by the value when no advance
reservations are involved (wq

0).

• Resource utilization (u).
• Percentage of rejected advance reservations (r).

4.4 Experimental Results

All experiment parameters and results are
summarized in Table 1.

Table 1. Experimental Results

No. p(%) n q u(%) r(%)
1 0 - 1 74 -
2 5 1.30 1.19 70 0
3 5 2.18 0.99 68 0
4 10 0.91 1.44 58 1
5 10 2.39 1.10 57 1
6 10 4.20 0.94 41 0
7 15 0.84 1.76 52 2
8 15 3.10 1.19 50 1
9 15 3.9 1.08 39 0
10 20 1.17 2.10 45 4
11 20 3.33 1.18 39 2
12 20 5.59 0.93 37 1

The first experiment is carried out without advance

reservations. Since in this situation wq equals to wq
0, the

relative mean wait time of queued jobs is 1. The resource
utilization is 74% when no advance reservations are
involved. Further results when different percentages of
advance reservations are involved will be compared with
these values. Statistical results are also illustrated in
Figures 2, 4 and 5, respectively. Below we discuss the
results in detail.

p 00.511.522.5 0 1 2 3 4 5 6 nq 5% 10% 15% 20%

Figure 2. Experimental Results I: Relative Mean Wait Time of

Queued Jobs (q) against Shortest Notice Time of Advance

Reservations (n) with different Percentages of Advance

Reservations (p) involved

Mean Wait Time
The mean wait time of queued job for each

experiment is illustrated in Figure 2. It is apparent that
the queue wait time increases with the number of
involved advance reservations. This effect is strongly
related to the added constraints at the time dimension so
that the queue scheduling efficiency is decreased. It can
be also noticed that in the case where n equals to 1,
which means advance reservations do not take start time
advantages, the q value is greater than 1 given any
percentage of advance reservations involved, which
means queue scheduling efficiency is decreased in any
case. For example, the mean wait time of queued jobs is
increased by 19% in exp. No. 2 when 5% of requests are
advance reservations and 76% in exp. No. 7 when the
percentage of advance reservations is 15%.

We are also interested in whether applying a longer
shortest notice time to advance reservations can lead to
better queue efficiency. It is apparent that as n increases,
q does decline in any case. On the one hand, when
advance reservations are configured with longer notice
time constraints and, thus, have to be started later,
queued jobs may start earlier. On the other hand, longer
notice time constraints somehow enforce that advance
reservations are scheduled with larger intervals, which
provides more opportunities for queued jobs to be
scheduled between these advance reservation intervals.
When more advance reservations are involved, it will be
more difficult to improve the queue efficiency. For
example, in exp. No. 3 when 5% requests are advance
reservations and the notice time constraint is configured
with 2.18 times of mean wait time of queued jobs, queue
scheduling is already as efficient as if there were no
advance reservations. But as shown in exp. No. 9, in
order to reach a similar efficiency when 15% requests are
advance reservations, the notice time constraint has to be
configured as long as 3.9 times of mean wait time of
queued jobs. 01234 0 5 10 15p(%)n

Figure 3. COSY Choice of Shortest Notice Time Constraints

for Advance Reservations (n) when different Percentages of

Advance Reservations (p) involved

In the COSY implementation, when a reservation
request arrives, in order not to influence the queue

scheduling, COSY does not only calculate the current
mean wait time of queued jobs but also the current
percentage of advance reservations. As described in
Figure 3, shortest notice time constraints for advance
reservations are represented as times of mean wait time
of queued jobs and increase linearly from 1 to 4 as the
percentage of advance reservations increases from 0%
(not inclusive) to 15%.

In general, when the percentage of advance
reservations is higher than 15%, it will be very difficult
to carry out queue scheduling properly. This can be
investigated by looking into the raw data of exp. No. 10.
In this experiment, reservation requests arrive so
frequently that some large queue jobs cannot be
scheduled in any interval of these advance reservations.
In real world systems, these jobs would have no chance to
be scheduled and will wait for ever. If many queued jobs
starve, it means the queue scheduling does not work at all.
The aim of the COSY implementation is to satisfy
advance reservations best possible without affecting
queue scheduling efficiency. Consequently, if COSY
detects a percentage of advance reservations of more than
15%, it will set an unlimited shortest notice time to
advance reservations, stop receiving further reservation
requests temporarily, and thus, guarantee a proper queue
scheduling.

Note that the scheduling polices for not increasing
queue wait time discussed above for advance reservations
are effective only if a representative workload is utilized.
When the workload is lighter or heavier, the result
achieved in Figure 3 has to be adapted accordingly. This
is beyond the scope of this paper.

p02040
6080 0 1 2 3 4 5 6nu(%) 5% 10% 15% 20%

Figure 4. Experimental Results II: Resource Utilization (u)

against Shortest Notice Time of Advance Reservations (n) with

different Percentages of Advance Reservations (p) involved

Resource Utilization
As illustrated in Figure 4, when more advance

reservations are involved, the average resource utilization
rate decreases. This is also observed in the work
described in [22]. It seems postponing advance
reservations does not lead to an improvement of resource
utilization but slightly reduces it, especially in the
situation when advance reservations are largely
postponed (e.g. exp. No. 6, 9 and 12). However further
investigations of the raw data of these experiments prove
that the statistics cannot reflect the situations of real
world systems. Since experiments have to an explicit end
point in time, in situations when advance reservations are
postponing largely (e.g. 4-5 times of the mean wait time
of queued jobs), some of the advance reservations are
scheduled to be started very late when all queued jobs are
already finished. Thus no queue jobs are left that could
utilize the last idle resources caused by advance
reservations. Since real world systems are continuously
operational, there will be more requests that can continue
to utilize these last idle resources. This issue is also
discussed in the simulation study described in [21].

p01234 0 1 2 3 4 5 6 nr(%) 5% 10% 15% 20%

Figure 5. Experimental Results III: Percentage of Rejected

Advance Reservations (r) against Shortest Notice Time of

Advance Reservations (n) with different Percentages of

Advance Reservations (p) involved

Rejection Rate
As illustrated in Figure 5, a very small amount of

advance reservations are rejected. This reduces the
comparability of experimental results because rejections
lead that workloads of different experiments become
different. However, since the percentage of rejected
requests is relatively small, we assume that the impact is
very limited.

We can also observe the fact that the more advance
reservations are involved, the more are rejected due to an
increase of conflicting (advance reservation)
requirements. As the notice time constraint of advance
reservations increases, the rejection rate decreases. This

is because a longer notice time somehow enlarges the
intervals of advance reservations, which therefore
reduces likelihood of conflicts. Please note that the before
mentioned decrease of the rejection rate is bound to the
condition that all advance reservations satisfy the notice
time constraint. In a real world system, longer notice
time constraints lead to fewer accepted advance
reservations, however, their chances for getting
scheduled and not causing conflicts are quite good.

5. Conclusions

The COSY job scheduling system presented in this
paper provides ordinary users with both queue scheduling
and advance reservations. Queue scheduling is
implemented with a backfilling mechanism. Advance
reservations provide QoS support and two phase
commitment. One of the interesting features is that
COSY can be applied implicitly for those users who do
not want to interact directly with the scheduling system.

In the work described in this paper, main research
focuses on the performance impact of advance
reservations on queue scheduling efficiency. Performance
evaluation and experimental results included in this work
conclude two solutions to the problems described at the
beginning of Section 4:

• Solution I. COSY takes the current mean wait time
of queued jobs as the shortest notice time
requirement for reservation requests so that advance
reservations cannot take start time advantages.

• Solution II. The mandatory shortest notice time of
advance reservations is applied in COSY as 1 time of
current mean wait time of queued jobs and increases
to 4 linearly as the percentage of advance
reservations increases from 0% (not inclusive) to
15% so that advance reservations can be satisfied as
far as possible without queue wait time penalty.
When the percentage of advance reservations is
higher than 15%, COSY will reject reservation
requests temporarily in order to guarantee a proper
queue scheduling.

More experiments will be carried out with more
realistic workload to verify above policies further. Future
work on the COSY implementation will focus on the use
of the COSY job scheduling system in a grid computing
environment. These may include:

• Extension of COSY generic user interfaces with
additional supports for standard languages (e.g.
JSDL [15]) and protocols (e.g. GRAAP [10])
currently being defined in the Global Grid Forum
(GGF).

• Integration of COSY with existing grid
infrastructure software (e.g. GARA [6] and ARMS
[1]) to enable grid level resource management.

• Implementation of COSY for ongoing grid testbeds
to drive domain specific grid applications (e.g.
GEMSS [9]).

The COSY support for two phase commitment is
especially driven by the QoS negotiation requirement of
medical simulation applications of the GEMSS project.
More flexible and dynamic QoS supports for advance
reservations with COSY will be implemented in near
future.

Acknowledgements

The COSY development is partly funded by the
European GEMSS project (EC/IST FP5 Project No. IST-
2001-37153).

References

[1] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R.

Nudd, “ARMS: an Agent-based Resource Management
System for Grid Computing”, Scientific Programming,
Special Issue on Grid Computing, Vol. 10, No. 2, pp.
135-148, 2002.

[2] Catalina, http://www.sdsc.edu/catalina.
[3] W. Cirne and F. Berman, “A Comprehensive Model of

the Supercomputer Workload”, in Proc. of 4th IEEE
Annual Workshop on Workload Characterization, 2001.

[4] D. Feitelson, Parallel Workload Models,
http://www.cs.huji.ac.il/labs/parallel/workload/models.ht
ml.

[5] D. Feitelson and L. Rudolph, Procs. of Workshops on Job
Scheduling Strategies for Parallel Processing,
http://www.cs.huji.ac.il/~feit/parsched/.

[6] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy, “A Distributed Resource Management
Architecture that Supports Advance Reservations and Co-
Allocation”, in Proc. of 7th IEEE Int. Workshop on
Quality of Service, 1999.

[7] I. Foster and C. Kesselman, The GRID: Blueprint for a
New Computing Infrastructure, Morgan-Kaufmann, 1998.

[8] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin and S.
Coll, “STORM: Lightning-Fast Resource Management”,
in Proc. of ACM/IEEE Supercomputing 2002.

[9] GEMSS, Grid Enabled Medical Simulation Services,
http://www.ccrl-nece.de/gemss/.

[10] GRAAP-WG, Grid Resource Allocation Agreement
Protocol, Working Group, Global Grid Forum,
http://www.fz-juelich.de/zam/RD/coop/ggf/graap/graap-
wg.html.

[11] A. Grimshaw, J. Weissman, E. West, and E. Lyot, Jr.,
“Metasystems: An Approach Combining Parallel
Processing and Heterogeneous Distributed Computing

Systems”, J. of Parallel and Distributed Computing, Vol.
21, No. 3, pp. 257-270, 1994.

[12] R. Hempel, H. Ritzdorf, and F. Zimmermann, “Efficient
Message Passing Interface Implementation for NEC
Parallel Computers”, NEC Research & Development,
Special Issue on High Performance Computing, Vol. 39,
No. 4, pp. 408-412, 1998.

[13] R. L. Henderson, “Job Scheduling Under the Portable
Batch System”, in Proc. of 1st Workshop on Job
Scheduling Strategies for Parallel Processing, 9th IEEE
Int. Parallel Processing Symp., Santa Barbara, California,
USA, Lecture Notes in Computer Science Vol. 949, pp.
279-294, 1995.

[14] D. Jackson, Q. Snell, and M. Clement, “Core Algorithms
of the Maui Scheduler”, in Proc. of 7th Job Scheduling
Strategies for Parallel Processing, ACM SIGMETRICS
2001, Cambridge, Massachusetts, USA, Lecture Notes
Computer Science Vol. 2221, pp 87-102, 2001.

[15] JSDL-WG, Job Submission Description Language,
Proposed Working Group, Global Grid Forum,
http://www.epcc.ed.ac.uk/~ali/WORK/GGF/JSDL-WG/.

[16] D. Lifka, “The ANL/IBM SP Scheduling System”, in
Proc. of 1st Workshop on Job Scheduling Strategies for
Parallel Processing, 9th IEEE Int. Parallel Processing
Symp., Santa Barbara, California, USA, Lecture Notes in
Computer Science Vol. 949, pp. 187-191, 1995.

[17] M. Litzkow, M. Livny, and M. Mutka, “Condor – a
Hunter of Idle Workstations”, in Proc. of 8th IEEE Int.
Conf. on Distributed Computing Systems”, San Jose, CA,
USA, pp. 104-111, 1988.

[18] J. MacLaren, “Advance Reservations: State of the Art”,
Working Draft, Global Grid Forum, 2003, http://www.fz-
juelich.de/zam/RD/coop/ggf/graap/sched-graap-2.0.html.

[19] SCore. http://www.pccluster.org/.
[20] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY-

Loadleveler API Project”, in Proc. of 2nd Workshop on
Job Scheduling Strategies for Parallel Processing, 10th
IEEE Int. Parallel Processing Symp., Honolulu, Hawaii,
USA, Lecture Notes in Computer Science Vol. 1162, pp.
41-47, 1996.

[21] W. Smith, I. Foster, and V. Taylor, “Scheduling with
Advanced Reservations”, in Proc. of 14th IEEE Int.
Parallel and Distributed Processing Symp., Cancun,
Mexico, 2000.

[22] Q. Snell, M. Clement, D. Jackson, and C. Gregory, “The
Performance Impact of Advance Reservation Meta-
scheduling”, in Proc. of 6th Job Scheduling Strategies for
Parallel Processing, 14th IEEE Int. Parallel and
Distributed Processing Symp., Cancun, Mexico, Lecture
Notes Computer Science Vol. 1911, pp 137-153, 2000.

[23] D. P. Spooner, S. A. Jarvis, J. Cao, S. Saini and G. R.
Nudd, “Local Grid Scheduling Techniques Using
Performance Prediction”, IEE Proceedings - Computers
and Digital Techniques, Vol. 150, No. 2, pp. 87-96, 2003.

[24] Sun ONE Grid Engine Software (SGE),
http://wwws.sun.com/software/gridware/.

[25] S. Zhou, “LSF: Load Sharing in Large-scale
Heterogeneous Distributed Systems”, in Proc. of
Workshop on Cluster Computing, 1992.

