
Process Streaming Healthcare Data
with Adaptive MapReduce Framework

Fan Zhang, Junwei Cao, Samee U. Khan, Keqin Li and Kai Hwang

Abstract As one of the most widely used healthcare scientific applications, body
area network with hundreds of interconnected sensors need to be used to monitor
the health status of a physical body. It is very challenging to process, analyze and
monitor the streaming data in real time. Therefore, an efficient cloud platform with
very elastic scaling capacity is needed to support such kind of real-time streaming
data applications. The state-of-art cloud platform either lacks of such capability to
process highly concurrent streaming data, or scales in regards to coarse-grained
compute nodes. In this chapter, we propose a task-level adaptive MapReduce
framework. This framework extends the generic MapReduce architecture by
designing each Map and Reduce task as a scalable daemon process. The beauty of
this new framework is the scaling capability being designed at the Map and Reduce
task level, rather than being scaled at the compute-node level, as traditional
MapReduce does. This design is capable of not only scaling up and down in real
time, but also leading to effective use of compute resources in cloud data center. As

F. Zhang (✉)
IBM Massachusetts Laboratory, Littleton, MA 01460, USA
e-mail: fzhang@us.ibm.com

J. Cao
Research Institute of Information Technology, Tsinghua University,
Beijing 100084, China
e-mail: jcao@tsinghua.edu.cn

S.U. Khan
Department of Electrical and Computer Engineering, North Dakota
State University, Fargo, ND 58108-6050, USA
e-mail: samee.khan@ndsu.edu

K. Li
Department of Computer Science, State University of New York,
New Paltz, New York 12561, USA
e-mail: lik@newpaltz.edu

K. Hwang
Department of Electrical Engineering and Computer Science,
University of Southern California, Los Angeles, CA 90089, USA
e-mail: kaihwang@usc.edu

© Springer International Publishing AG 2017
S.U. Khan et al. (eds.), Handbook of Large-Scale Distributed Computing
in Smart Healthcare, Scalable Computing and Communications,
DOI 10.1007/978-3-319-58280-1_3

43



a first step towards implementing this framework in real cloud, we have developed
a simulator that captures workload strength, and provisions the just-in-need amount
of Map and Reduce tasks in realtime. To further enhance the framework, we applied
two streaming data workload prediction methods, smoothing and Kalman filter, to
estimate the workload characteristics. We see 63.1% performance improvement by
using the Kalman filter method to predict the workload. We also use real streaming
data workload trace to test the framework. Experimental results show that this
framework schedules the Map and Reduce tasks very efficiently, as the streaming
data changes its arrival rate.

Keywords Adaptive Mapreduce ⋅ Big data ⋅ Healthcare scientific
applications ⋅ Kalman filter ⋅ Parallel processing

1 Introduction

Big-data technology has been a driving force for the state-of-art healthcare science.
Most of the healthcare applications are composed of processes that need to manage
Gigabytes of real-time and streaming data. For example, the Body Area Network
[1] that is widely recognized as a medium to access, monitor, and evaluate the
real-time health status of a person, has long been notorious for its computing
intensiveness to process Gigabytes of data [2, 3] in real-time. Such data are col-
lected from well-configured sensors to sample the real-time signals of body tem-
perature, blood pressure, respiratory and heart rate, chest sound, and cardiovascular
status, to name a few among others.

To process stream big-data in real-time, traditional parallelized processing
frameworks, such as Hadoop MapReduce [4], Pregel [5], and Graphlab [6, 7], are
structurally constrained and functionally limited. The major difficulty lies in their
designs, which are primarily contrived to access and process the static input data.
No built-in iterative module can be used when the input data arrives in a stream
flow. Moreover, the existing frameworks are unable to handle the scenarios when
the streaming input datasets are from various sources and have different arrival
rates. Streaming data sample rates are consistently changed while the healthcare
scientific applications are running. For example, the data collected when a person is
sleeping is usually far less than the data collected when the person is running or
swimming.

Cloud computing, with most of its few open-source tools and programming
models, have provided a great opportunity to process such time-varied streaming
data healthcare applications. Amazon Elastic MapReduce (EMR) framework [8], as
an example, is typically represented by its compute instances being automatically
scaled up or down and scaled in or out when workload changes. However, the

44 F. Zhang et al.



granularity of the scaling is too coarse for most of the healthcare applications,
meaning we need more fined-grained scaling objects, such as CPU core, memory
size or active processing tasks, to be used in order to be able to scale in real time. In
our early research paper [9], we have discovered and identified an issue when
scaling large number of compute instance, named the large-scale limitation issue.
This issue demonstrates the most MapReduce applications fail to promise its
scaling capability when the number of the compute instances exceeds the actual
need. Therefore, the scalability would find itself more tractable when one the
MapReduce application scales at a task level—increasing or reducing the Map and
Reduce task number when a variation of the workload is predicted.

Tools with such fined-grained scaling capability are really rare to find. For
example, the number of the Map tasks and Reduce tasks in a launched MapReduce
job is fixed and can never be changed over time. However, such a fined-grained
processing is widely needed. It is also very possible to do so since the number of the
Map tasks are usually related the number of chunks of the input dataset sizes, and
the number of the Reduce tasks is related to the hashing algorithm used for the
intermediate keys. There is no strong constraint between the number of the Map
Tasks and Reduce Tasks. All these make the scaling of the Map and Reduce tasks
possible. In the next section, we will survey a few commercial tools that have been
widely used in business for similar purposes.

Towards that end, we propose a full-fledged MapReduce framework that is
tailored for processing streaming data in healthcare scientific applications. The
framework goes beyond the traditional Hadoop MapReduce design, while also
providing a much more generic framework in order to cover a wider group of
real-time applications. Traditional Hadoop MapReduce requires the Map and
Reduce number to be fixed, while this new MapReduce framework doesn’t require
so. Furthermore, Each Map and/or Reduce task is mandatory to reside on its own
JVM in traditional Hadoop MapReduce. In the new framework, one such a Map
and/or Reduce task can be specified much differently, whether it be in a JVM, a
local thread or process, or even an entire compute node, to name a few among
others. In other words, this framework absorbs the MapReduce design primitive,
that the Map tasks outputting data to all the Reduce tasks, but in a way that requires
much less constraint. It’s our expectation that this new framework is supposed to
streamline the streaming data processing, which has never been implemented in
traditional Hadoop MapReduce at all. The major contribution of this chapter is
summarized below.

(1) A unique task-level and adaptive MapReduce framework is proposed in order
to process rich and varied arrival rate streaming data in healthcare applica-
tions. This framework enriches the traditional Hadoop MapReduce design in a
way that specifically addresses the varied arrival rate of streaming data chunks.
The framework is mathematically grounded on quite a few theorems and
corollaries, in order to demonstrate its scaling capability. A full stack simulator
is also developed with extensive experiments to validate the effectiveness.

Process Streaming Healthcare Data with Adaptive MapReduce … 45



(2) In order to better process streaming data and better use compute resources in a
scaling process, a workload arrival rate prediction mechanism is therefore
needed. This chapter covers two innovative workload prediction algorithms.
Real-life healthcare experiments are used to compare the performance of them.

(3) Finally, we demonstrate more experiment results by showing the close rela-
tionship between the active numbers of the Map/Reduce tasks with the number
of the streamed workload tasks. This reveals the adaptively of framework, as
well as the correctness of the mathematical foundation.

This chapter is organized as follows. The first section introduces a real model of
healthcare scientific applications, and necessitates the requirement of processing
stream-style big-data. In the second section, we report the related work, and also
introduce our unique approach. A real-life healthcare application study is followed
in section three. After that, we reveal the methodology of the proposed task-level
adaptive MapReduce framework. Two innovative methods for predicting the
streaming data workload are proposed in the next section. Experiment settings and
the results are introduced in the fifth section. Finally, we conclude the work and
summarize a few aspects of directions to continue the work.

2 Related Work and Our Unique Approach

There is an escalating interest on leveraging the state-of-art big-data platform to
process stream data in real-time. In this section, we investigate previous publica-
tions in this area. Thereafter, we briefly describe our unique approach to show the
advantage among other solutions.

2.1 Related Work

Health Information System [10] was originated and further extended from the
hospital information system [11] that addresses what is called the health informatics
issues. The major challenge involves the shift from paper-based to computer-based,
and further to the Internet-based data storage processing. Patients, healthcare
consumers, and professionals are more involved into a collaboration phase from a
traditional in- or out-patient medication, to a widely acceptable online on-demand
treatment. Such a shift requires a significantly powerful interconnection compute
network and highly scalable compute nodes for both computing and big-data
processing.

46 F. Zhang et al.



MapReduce is a simple programming model for developing distributed data
intensive application in cloud platforms. Ever since Google initially proposed it on
a cluster of commodity machines, there have been many follow-up projects. For
instance, Hadoop [12] is a Mapreduce framework developed by Apache, and
Phoenix [13] is another framework designed for shared memory architecture by
Stanford University. Pregel [5] is a message-based programming model to work on
real-life applications that can be distributed as an interdependent graph. It uses
vertex, messages, and multiple iterations to provide a completely new programming
mechanism. GraphLab [6, 7] is proposed to deal with scalable algorithms in data
mining and machine learning that run on multicore clusters.

The above-mentioned tools have a wide impact on the big-data community and
have been extensively used in real-life applications. Along those lines, other
research efforts addressing streaming data have been proposed. Nova [14], due to its
support for stateful incremental processing leveraging Pig Latin [15], deals with
continuous arrival of streaming data. Incoop [16] is proposed as an incremental
computation to improve the performance of the MR framework. Simple Scalable
Streaming System (S4) [17], introduced by Yahoo!, is universally used, distributed,
and scalable streaming data processing system. As one of its major competitor,
Twitter is using Storm [18] that has also gained momentum in real-time data
analytics, online machine learning, distributed remote procedure call, ETL (Extract,
Transform and Load) processing, etc. Other companies, such as Facebook, Lin-
kedin and Cloudrera, are also developing tools for real-time data processing, such
as Scribe [19], Kafka [20], and Flume [21]. Even though the programming lan-
guages are different, they all provide highly efficient and scalable structure to collect
and analyze real-time log files. Complex Event Processing systems (CEP) are also
gaining interest recently. Popular CEP systems include StreamBase [22],
HStreaming [23], and Esper&NEsper [24]. Essentially the CEP systems are primary
used in processing inter-arrival messages and events.

Different from these research and commercial products, our work goes beyond a
programming model framework, but also serves as a simulator to help users identify
how their compute resources can be effectively used. Secondly, the framework is
still based on a generic MapReduce, but not entirely a Hadoop MapReduce
framework. We do not intend to design a completely new framework, but we aim to
extend a widely acceptable model to allow it to seamlessly process streaming data.
Our work may aid the programmers to manipulate the streaming data applications
to process such kinds of flow data in a more scalable fashion.

2.2 Our Unique Approach

In a nutshell, our approach implements each Map and Reduce task as a running
daemon. Instead of processing local data in Hadoop Distributed File System

Process Streaming Healthcare Data with Adaptive MapReduce … 47



(HDFS) as what traditional Hadoop usually does, the new Map tasks repeatedly pull
the cached stream data in the HDFS, generate the Map-stage intermediate key-value
pairs and push them to the corresponding Reduce tasks. These Reduce tasks, quite
similar to what the Map tasks, are also implemented in such a way. These Reduce
tasks repeatedly pull the corresponding data partitions from the entire Map task
output, generate the Reduce-stage intermediate key-value pairs and push them to
the local disk cache. In this way, each Reduce task has to cache the intermediate
status of all the output key-value pairs when the application is on going.

Take a simple example to illustrate the scenario. Multiple users are collaborating
by adding/removing/updating words, sentences and files to HDFS as data streams.
An enhanced WordCount application requires obtain the real-time count of each
word when the texts are consistently updated. Map tasks are implemented in a
stateless manner, meaning that they just simply process the corresponding input
data and produce output without having to worry about previous data that they have
processed. However, the Reduce tasks must be implemented in a stateful way. This
means that each of the Reduce task has to save the real-time count of each word and
adaptively add or reduce the count whenever there is a change in the HDFS.

The essence of our approach, as we can see from the analysis, lies in the
seamless connection to the MapReduce implementation. Users write data streaming
applications as they did in writing traditional MapReduce applications. The only
difference, however, is that they need to write such a Map and Reduce daemon
function. Secondly, our approach can be implemented to scale the Map and Reduce
task number separately. Traditional MapReduce framework which scales compute
nodes usually leads to low compute resource usage when the active running tasks
cannot utilize these compute nodes effectively.

An example is used here to illustrate the adaptive MapReduce application that
calculates the real-time occurrence of each word in a set of documents. Multiple
people consistently update these documents, and therefore the statistics of each
word count differ from time to time.

The Map tasks below are continuously fed by input data stream, and enter into a
loop that would not stop until the data stream update ends. For each of the loop, all
the words are extracted and emitted key value pairs as tradition WordCount does.
The Reduce tasks, also being launched in a loop, are fed continuously by the
intermediate data produced by all of the Map tasks. The only difference here is the
result, which needs to be fetched from HDFS. Because for each result that has been
calculated, it needs repeatedly updating. Therefore, Reduce tasks should be able to
not only write data back to the HDFS, but also retrieve data back from HDFS for
updating.

48 F. Zhang et al.



Map Function: map(String k, String v): 

// k: doc name in a streaming data 

// v: doc contents 

While(HasMoreData) 

 value = GetStreamDataContent(); 

for each word w in value: 

EmitIntermediate(w, "1"); 

Reduce Function: reduce(String k, Iterator vs): 

// k: a word 

// vs: a list of counts 

While(HasMoreIntermediateData) 

int result = getResultFromHDFS; 

for each v in vs: 

result += ParseInt(v); 

Emit(AsString(result)); 

3 Problem Formulation of a Real-Life Healthcare
Application

In Fig. 1, we illustrate a case study of the body area network as a real-life healthcare
application. Health status regarding the respiration, breath, cardiovascular, insulin,
blood, glucose and body temperature, which are consistently collected by sensors
deployed all over the human body. This is wearable computing, which sends data
periodically to a mobile phone via local network. The sample frequency is deter-
mined by the capacity of the sensors as well as the processing rate of the mobile
device.

Because most of the mobile devices nowadays are equipped with advanced
processing unit and large memory space, data can be continuously transferred to a
mobile device and even processed within the mobile device. Therefore, the various
sources of input data can be even locally analyzed before moving to the remote data
center. The data center has information on various disease symptoms and the
corresponding value threshold in regards to the insulin pump and glucose level, etc.
The purpose of the follow-up data transferring is to compare the collected data with
those in the database, and quickly alert the user the potential symptom he/she is
supposed to see, and provide a smart medical suggestion in real-time.

Process Streaming Healthcare Data with Adaptive MapReduce … 49



Data sampled within a wearable computing can usually go up to GB per minutes.
With a high sample rate, more accurate data can therefore be used, and the diag-
nosis can be more in real time, and the alert can be better in use. Therefore, it is
strongly needed that the data center can support thousands of users’ real-time data
access, as well as computing across multiple dimensions of syndromes and features
to be collected.

4 Task-Level Adaptive MapReduce Framework

In this section, we brief an overview of the Hadoop MapReduce framework as a
start. Thereafter, the task-level provisioning framework is introduced in the sub-
sequent text.

4.1 Preliminary of Hadoop MapReduce Framework

The standard Hadoop MapReduce framework is depicted in Fig. 2. There are 4
parallel Map tasks and 3 parallel Reduce tasks, respectively. Because the total

Fig. 1 As a case study of the
body area network, data
streams collected from
various sensors are pushed to
a mobile device and backend
data center for real-time
medical treatment

50 F. Zhang et al.



number of the Map tasks normally equals to the number of the input data splits,
there are four data splits as well. Each Map task performs a user-defined Map
function on the input data that resides in the HDFS and generates the intermediate
key-value pair data. These intermediate data are organized on the partition basis.
Each of the partition consists of certain key-value data pairs, whose keys can be
classified into one group. The simplest classification method is a hash function.
Within such a hash capability, data partition belonging to the same group are
shuffled across all the compute nodes and merged together locally. There are three
data partitions shown in the figure. These merged data partitions, as indicated by
three different framed rectangular boxes, are consumed by three Reduce tasks
separately. The output data generated by all the Reduce tasks are written back to the
HDFS.

Each Map task resides in a Map slot of a compute node. Usually Two Map slots
reside in one compute node. The slot number per node can be adjusted in the
configuration file. The total number of the Map slots determines the degree of
parallelism that indicates the total number of Map tasks that can be concurrently
launched. The rational for the Reduce task and Reduce slot is the same. The whole
Hadoop MapReduce workflow is controlled in a JobTracker located in the main
computer node, or what is called the NameNode. The Map and Reduce tasks are
launched at the TaskNodes, with each task corresponding to one TaskTracker to
communicate with the JobTracker. The communication includes heart-beat message
to report the progress and status of the current task. If detecting a task failure or task
straggler, the JobTracker will reschedule the TaskTracker on another Task slot.

As we can see from Fig. 2 above, the Hadoop MapReduce is essentially a
scheduling framework that processes data that can be sliced into different splits.
Each Map task is isolated to process its input data split and no inter-Map com-
munication is needed. The Hadoop MapReduce framework can only be applied to
process input data that already exist. However, real-life big-data applications typ-
ically require the input data be provisioned in streaming and be processed in

Fig. 2 A MapReduce framework splits the input file into 4 segments, and each segment
corresponds to one Map task. Map Tasks output data partitions, which are further shuffled to the
corresponding Reduce tasks. There are 3 reduce tasks which generate 3 separate outputs

Process Streaming Healthcare Data with Adaptive MapReduce … 51



real-time. Therefore, an enhanced MapReduce framework is required to cater for
such a need. That is the motivation behind out design of the task-level adaptive
MapReduce framework.

4.2 Task-Level Adaptive MapReduce Framework

An adaptive MapReduce framework is proposed to process the streaming data in
real-time. One of the most significant challenges here is how to process the
streaming data with varied arrival rate. Real-life applications entail workloads of a
variety of many patterns. Some of the workloads show a typical pattern of peri-
odical and unpredictable spikes, while others are more stable and predictable. There
are four technical issues that we should consider when designing the adaptive
framework.

First, the framework should be both horizontally and vertically scalable to
process a mixture of such varied workloads. In other words, the scheduling system
should either be able to manage compute node count, but also types. For some
Hadoop MapReduce applications, merely managing the number of compute nodes
is not necessarily sufficient. Certain kinds of workloads require large CPU-core
instances while others need large-memory instances. In a nutshell, scaling in a
heterogonous system is one of the primary principles.

Second, the number of the active Map and Reduce tasks should be in accordance
with the cluster size. Even though the Map and Reduce count determines the overall
performance of the whole system, it still doesn’t perform that desirable if the cluster
is either over provisioned or under provisioned.

Third, scaling the Reduce tasks is very tedious. This is determined by the design
of the Reduce phase. If the number of the Reduce task increases, the hash function
that maps a particular Map output partition data to a Reduce function will change.
Take modular operation as a hash function as an example. Increasing the Reduce
count from r to r’ leads to key mod r to key mod r’ as the corresponding new hash
function. A reorganization of the Reduce output will be added to the Reduce phase
when the number of the Reduce task has changed.

Fourth, we also need to consider the heterogeneity of the processing capabilities
of different Map tasks. Some of the Map tasks may be scheduled on a slow node
while others are on much faster nodes. An appropriate load balancing mechanism
can further improve the rescheduling philosophy implemented in the traditional
Hadoop MapReduce. The purpose is to coordinate the progress of the entire task
without leading to skew task execution time.

Fifth, the optimal runtime of Map and Reduce task count should be specified.
Traditionally, the initial Map task number depends on the input dataset size and the
HDFS block size. The Reduce task count is determined by the hash function. The
new framework requires a redesign of the Map and Reduce Task scheduling policy
by considering the input data arrival rate instead of their sizes instead.

52 F. Zhang et al.



To satisfy all the purposes above, we demonstrate a task-level adaptive
MapReduce framework in Fig. 3. Two Map tasks are used as representatives of the
Map stage. Each Map task, different from the Map task of the traditional Hadoop
MapReduce, defines a loop function as shown in the loop-back arrow. The two Map
tasks are launched as special runtime daemons to repeatedly process the streaming
data. Each of the Map task produces two continual batches of output data partitions.
Similarly, the Reduce tasks are also scheduled in such a loop-like daemon that
continuously processes their corresponding intermediate data produced by all the
Map tasks.

In this new task-level adaptive MapReduce framework, the JobTrackers need to
be redesigned to maintain a pool of TaskTrackers, and the TaskTracker count may
change as the workload changes.

There are two ways to feed data streams into the Map tasks. A proactive strategy
caches streaming data locally first and pushes them every fixing period of time, say
1 min. As an alternative option, data splits can also be pushed in a reactive way. In
other words, a cache size is defined in HDFS before the input data starts to move in,
whenever the cache usage hits a ratio, say 85%, the data splits begin to be pushed to
the Map tasks.

4.3 Adaptive Input Data Split Feeding

The adaptive MapReduce framework starts from a novel runtime scheduler that
feeds different Map tasks with different number of data splits. In Fig. 4a, we show a
study case of the adaptive input data split feeding. As a start, six splits of input data
arrive. The scheduler, without knowing the processing capability of each Map task,
distributes the data splits evenly to the two Map tasks, which results to each Map
task having three data splits. Suppose the first Map task is executed on a faster

Fig. 3 A demonstration of task-level adaptive MapReduce framework which processes streaming
data. Each Map and Reduce task has a non-stop running daemon function which continuously
processes the input data

Process Streaming Healthcare Data with Adaptive MapReduce … 53



compute node and has processed two splits of the input data while the second Map
task has processed only one. Being aware of such a skewed processing capability,
the scheduler sends the newly arrival three data splits adaptively to balance the
workload in Fig. 4b. This leads to Map task one has four data splits while Map task
two has two, and the total execution time of the Map stage is minimized.

In this case, processing the three newly arrival data splits doesn’t result in an
increase of Map task count, but trigger the scheduler to dispatch them fairly to all
the Map tasks. Scheduler caches the input data locally in HDFS and regularly sends
them to different Map tasks. The time interval is also adaptively determined by the
arrival rate of the data splits.

To refresh readers’ memory and ease difficulty in understanding all the mathe-
matics below, we plot table one below, which summarizes all the symbols and
explain their meanings (Table 1).

Suppose there are m Map tasks and the task queue length of each Map task be
Q. In the Fig. 4, we set m equal to 2 while Q equal to 4. Suppose as a start the input
data has n0 data splits. As long as n0 be less than m * Q, each Map task gets
approximately n0/m data splits (Fig. 5).

Fig. 4 A demonstration of the adaptive input data split feeding. a Initially six data splits arrive.
Without knowing the compute capacity of each Map task, scheduler divides the workload evenly
between the two queues, each one having three data splits. b After being aware of the processing
capacity of each Map task, the scheduler sends three data splits to Map task one which shows twice
the processing capacity at the consecutive scheduling period

54 F. Zhang et al.



The scheduling period, namely the time interval between two data feeding
periods is t. In other words, every t units (seconds or minutes) of time, scheduler
feeds one batch of the cached data into the Map queues. Suppose at time ti, the data
splits count of each Map task queue equals to [dMapTaskN(0), dMapTaskN(1), …,
dMapTaskN(m − 1)] after the newly arrived data splits have been pushed into the
queues. After time t at ti+1, the remaining task count becomes [dMapTaskN’(0),
dMapTaskN’(1), …, dMapTaskN’(m − 1)]. The estimated processing capacity of
each Map task is estimated as [(dMapTaskN’(0) − dMapTaskN(0))/t, (dMap-
TaskN’(1) – dMapTaskN(1))/t,…, (dMapTaskN’(m − 1) – dMapTaskN(m − 1))/t].

Table 1 Symbols, notations and abbreviations with brief introduction

Notation Brief definitions with representative units or probabilities

m The total number of available Map tasks
Q The total number of data splits that can be accommodated in each Map task
n0 The total number of data splits arrives at the start time
t The scheduling period, denoting the data feeding frequency from the

scheduler to all Map tasks
dMapTaskN(j) The number of data splits that remained in the queue of Map task j at time ti
dMapTaskN’(j) The number of data splits that remained in the queue of Map task j at time ti+1
eMapTaskC(j) The estimated data processing capacity for Map task j

addedDataSplit
(j)

The number of data splits that needs to be added to Map task j after new
stream data arrives

TT Estimated finish time of all the Map tasks
α Upper bound percentage threshold used when Map task number above α * Q

in a queue, Map tasks are over provisioned
β Lower bound percentage threshold used when Map task number below β * Q

in a queue, Map tasks are under provisioned

Fig. 5 Demonstrates of adding an adaptive Map task. Continued from the previous example, if
the input data split count is six, the scheduler adaptively launches one Map task instead of feeding
all the data splits to the queues. The other three data splits are moved to the newly added Map task

Process Streaming Healthcare Data with Adaptive MapReduce … 55



Suppose ni+1 data splits arrive at time ti+1. We consider a scheduling algorithm
that effectively distributes all these data splits to all the Map tasks in Theorem 1.
Second, we consider in Corollary 1 that whether the Map task number should
remain the same or need to change. Third, if the Map task number needs to change,
we calculate the variation of the Map tasks in Theorem 2. We separate the analysis
into two different sections. In this section we discuss a scenario that workload
doesn’t have to trigger the change of the Map tasks. In the following section, we
continue to discuss scenarios that Map task number needs to change.

Theorem 1 Condition: Suppose there are mi Map tasks being actively used at time
t + 1. As a new stage, Ni+1 new data splits arrive. For any Map task j, dMapTaskN
(j) data splits are in its queue. Its estimated data processing capacity is eMapTaskC
(j).

Conclusion: The new data split count to be added to its queue is represented by:

addedDataSplitðjÞ= eMapTaskCðjÞ
* Ni+1 + SUM dMapTaskNð: Þð Þð Þ
̸ SUM eMapTaskCð: Þð Þ
− dMapTaskNðjÞ

ð1Þ

SUM(dMapTaskN(:)) denotes the total number of data splits across all the
queues. SUM(eMapTaskC(:)) denotes the aggregated processing capacity of all the
Map tasks.

Proof The scheduling target is to make sure all the tasks of the Map queues be
finished almost at the same time, and let that task time be an unknown value TT. For
any Map task j, TT = (dMapTaskN(j) + addedDataSplit(j))/eMapTaskC(j), j ∈ [0,
mi − 1]. Note that Σ dMapTaskN(j) = Ni+1. Solving a total of mi − 1 equations
leads to the proof of theorem 1. Q.E.D

Corollary 1 Let Q be the queue length of each Map task, namely the total number
of data splits that can be accommodated in one Map task queue. Other conditions
are the same as in the Theorem 1. Then new Map tasks need to be added if ∃ j ∈
[0, mi − 1], dMapTaskN(j)) + addedDataSplit(j) > α * Q. Similarly, Map task
number needs to be reduced if ∀ j ∈ [0, mi − 1], dMapTaskN(:) + addedDataSplit
(j) < β * Q. Symbol α ∈ [0, 1] is a preset threshold to determine how full the Map
task queues are allowed. Similarly, β ∈ [0, 1] is preset to determine how empty the
Map task queues are allowed.

Proof If ∃ j ∈ [0, mi−1], dMapTaskN(j)) + addedDataSplit(j) > α * Q, this
means the Map task number of one Map task queue will be above threshold if the
new data splits were added. It automatically triggers a Map task increase request to
the scheduler. Similarly, if ∀ j ∈ [0, mi−1], dMapTaskN(j) + addedDataSplit
(j) < β * Q holds, this indicates the Map task count of each Map queue is less than
a preset value, which means sufficient resources have been provided. A request is
therefore sent out to reduce the Map task count. Q.E.D

56 F. Zhang et al.



In a nutshell, the purpose of designing such an adaptive scheduler is to leverage
the processing capability of all the Map tasks and balance the start time of all the
Reduce tasks.

4.4 Adaptive Map Task Provisioning

In the previous section, we focus on discussing the Map task provisioning mech-
anism that determines the time Map task needs to be updated. A natural extension
along that line requires answer a provisioning mechanism—how many Map tasks
need to be added or reduced in order to efficiently process the new stream data
splits. If adding Map task is required, how to distribute the stream data splits across
all the Map tasks, including the new ones. On the contrary, if reducing Map task is
required, how to distribute the stream data splits, as well as the data splits in the
queues that are supposed to remove, to all the remaining Map task queues.

Theorem 2 Given the condition in Theorem 1 and ∃ j ∈ [0, mi − 1], dMapTaskN
(j)) + addedDataSplit(j) > α * Q, the number of the new Map tasks that is needed
is given below:

⌊ðNi+1 − aQ SUMðeMapTaskCð: ÞÞ ̸ eMapTaskCðj*Þ
+ SUMðdMapTaskNðjÞÞÞ
* eMapTaskCðj*Þ ̸ aQ⌋+1

ð2Þ

For the Map task j, the new data splits count added to its queue equals to the
formula below when j ∈ [0, mi − 1].

aQ eMapTaskCðjÞ ̸ eMapTaskCðj*Þ− dMapTaskNðjÞÞ ð3Þ

Suppose the default estimated computing capacity of each new Map task is
eMapTaskC. For the new added Map task, each is allocated an initial number of
data splits in their queues. The data split number is given below:

aQ eMapTaskC ̸ eMapTaskC j*
� � ð4Þ

Proof Suppose Map task j* has the maximum computing capacity across all the
Map tasks: eMapTaskC(j*) > eMapTaskC(j) for all j ∈ [0, mi − 1]. Then the
maximum data splits count allowed to be added to its queue equals to αQ −
dMapTaskN(j*)). Proportionally compared, the maximum data split count of the jth
Map task queue equals to αQ eMapTaskC(j)/eMapTaskC(j*) − dMapTaskN(j)) and
Eq. (3) is proven. Therefore, aggregating all the data splits that are allocated to Map
task j equals to αQ SUM(eMapTaskC(:))/eMapTaskC(j*) – SUM(dMapTaskN(:)).
Since we assume that all the Map tasks can be finished within αQ/eMapTaskC(j*),
then given the default processing capacity of all the new Map tasks for the

Process Streaming Healthcare Data with Adaptive MapReduce … 57



remaining data splits, the needed Map tasks count is calculated by dividing the
remaining data split count over the expected Map task finish time and Eq. (2) is
therefore proven. Equation (4) is calculated by multiplying the predicted Map task
execution time with the default processing capacity of each Map task. Q.E.D

Theorem 3 Given the condition in Theorem 1 and ∀ j ∈ [0, mi − 1], dMapTaskN
(j) + addedDataSplit(j) < β * Q and Suppose dMapTaskN(0) > dMapTaskN
(1) > … > dMapTaskN(mi − 1), the Map Task set {MapTask_0, MapTask_1, …,
MapTask_k} needs to be removed if: ∀ j ∈ [k, mi − 1], dMapTaskN
(j) + addedDataSplit(j, k) < β * Q and ∃ j ∈ [k + 1, mi − 1], dMapTaskN
(j)) + addedDataSplit(j, k + 1) > α * Q. After removing the Map tasks, the
remaining Map task j (j ∈ [k + 1, mi − 1]) adds data split count: addedDataSplit
(j, k + 1) A more general term is defined as follows.

addedDataSplitðj, pÞ= eMapTaskCðjÞ
* Ni+1 + SUM dMapTaskNð: Þð Þð Þ
̸ SUM eMapTaskC p:mi − 1ð Þð Þ
− dMapTaskNðjÞ

ð5Þ

Proof A descending order of the remaining data splits leads to removing the Map
task starting from the slowest one. The slower one Map task is, the slower that Map
queue tasks to finish. We start to remove MapTask_0 and add its queued data splits
to Ni+1. Reallocating the total Ni+1 + dMapTaskN(0) data splits to the remaining
mi − 1 Map tasks. If the data split count of each these remaining Map task still
lower than β * Q, the procedure moves on. This procedure stops until when at least
there is one Map task has its queued data split count larger than α * Q. Q.E.D

4.5 Adaptive Reduce Task Provisioning

Adaptive provisioning of the Reduce tasks is far less straightforward than provi-
sioning the Map tasks. Since Hadoop MapReduce is a framework primarily
designed to scale the Map stage by involving embarrassingly parallel Map tasks, the
Reduce tasks require network resource and an m to r data shuffling stage. In Fig. 6,
we identify a scaling scenario of adding a new Reduce task to the original three
tasks. The new added Reduce task should have no impact on saving the network
usage since all the intermediate data still have to be moved among all the compute
nodes. The only difference is the degree of parallelism in the Reduce stage, that
each Reduce task can process less data partitions as well as move less output data
back to HDFS.

As aforementioned, the Map tasks can be added incrementally one by one.
However, this doesn’t necessarily guarantee the best scheduling performance if

58 F. Zhang et al.



Reduce tasks were to be added in the same way. This is because there is no strict
demand that one input data split should go to a particular Map task. The Reduce
tasks, however, only accepts their partition data in need. Adding one Reduce task
would inevitable change the hash function, which accordingly leads to the data
partition changed, and mess the shuffling process.

Take an example here. Suppose the key set of the dataset is an nine-number set
[0, 1, 2,…, 8]. There are three Reduce tasks R1, R2 and R3 as shown in Fig. 6. The
hash function is a simple modular operation, e.g. key mod 3. Therefore, R1 gets
partition data whose keys are [0, 3, 6]; R2 gets partition data whose keys are [1, 4,
7]; R3 gets partition data whose keys are [2, 5, 8]. Adding one Reduce task leads to
the partition be [0, 4, 8] for R1, [1, 5] for R2, [2, 6] for R3 and [3, 7] for R4. In all,
there are six keys that are either moved to R4 or being exchanged among inside R1,
R2, and R3. Similar conclusion applies to the case that five Reduce tasks are used.
However, if the Reduce task number doubled to 6, then [0, 6] will be for R1; [1, 7],
[2, 8], [3], [4], [5] are keys for R2 to R6 respectively. Then there are data associated
with only three keys, [3, 4] and [5], that needs to moved.

In such a case, a workaround would be replacing the hash function with an
enumerated list of the keys as a lookup table. For each intermediate key-value pair
needs to be shuffled, the corresponding Reduce task number is searched through the
list. For example, the list can be like this [R1, 0, 1, 2], [R2, 3, 4, 5], [R3, 6, 7, 8]. If a
new Reduce task R4 is added, we can simply create a new entry as [R4, 2, 8], and
remove the keys [2] and [8] from their corresponding list.

The downside of the workaround approach can be easily identified. The search
operation might involve I/O data accessing, which is far less efficient than calcu-
lating the hash function. We can put the mapping list in memory instead if the total
number of the keys is not very large.

Fig. 6 A graphical
illustration shows one parallel
Reduce task being added.
This added Reduce task
brings no benefit in the data
shuffling stage but results to a
reduced data volume to be
processed/outputted for each
Reduce task

Process Streaming Healthcare Data with Adaptive MapReduce … 59



5 Experimental Studies

In this section, we first propose two methods for stream data workload prediction.
After that, we show our experimental results of the prediction performance of the
methods and the makespan of using these methods. Last, we report our task-level
adaptive experimental results in terms of the Map and Reduce count in runtime
when workload changes.

5.1 Workload Prediction Methods

For stream data applications, adaptive MapReduce task provisioning strategy
should align with the workload variation. However, workloads are normally
unknown in advance. In this section, we investigate two widely used prediction
methods first and compare them prediction performance using real workload in the
next section.

Stochastic control, or learning-based control method, is a dynamic control
strategy to predict workload characteristics. There are numerous filters that can be
applied. For example, smooth filter, or what we normally call as smoothing tech-
nique, predicts real-time workload by averaging the workload of a previous time
span. The basic assumption here is that workload behaves reactively and not subject
to significant variation in a short period of time. The average of the past one period
would best represents the future workload.

There are many further improvements on the smoothing technique. For example,
weighted smoothing gives higher weights to more recent workload than those that
are old. The assumption here is that more recent workload would show higher
impact on the real-time workload than older ones. Other prediction methods include
AR method, which applies polynomial functions to approximate the workload.
Among others, we want to bring forward the Kalman filter [25], also named as
linear quadratic estimation, which is also widely used in workload prediction.
Kalman filter works on a series of historical data stream of noise, updates and
predicts future trend with statistically optimal estimations.

5.2 Experimental Settings

We use SimEvent [26] to simulate the experiments. This is a toolkit component
included in Matlab. Each map/reduce task is simulated as a queue. During the
runtime, the Map and Reduce tasks serve workload at different capacity, therefore
the proposed task-level scheduling framework fits into such a need.

60 F. Zhang et al.



Both the Kalman Filter and the Smooth Filter are used to predict the workload.
Two metrics, workload prediction accuracy and makespan, are both used for the
three methods. The workloads we use were primary produced from real body area
network data trace [27, 28]. The workload fluctuation amplitude, on the other hand,
applies the web data trace from the 1998 Soccer World Cup site [29]. This
workload trace has the average arrival rate data on each single minute over a 60-min
duration as shown in Fig. 7a, d and g. We carefully choose three typical and varied
stream data workload types: small, intermediate and strong, for the purpose of
simulation. Small workload typically generates 20–60 data splits per minute.
Intermediate workload generates 30–150 data splits per minute while strong
workload generates 160–1180 data splits per minute.

5.3 Experimental Results

In Fig. 7b, e and h, the Kalman filter shows no more than to 19.97% prediction error
compared to 50% of that when using the Smooth filter method in the light workload

0 10 20 30 40 50 60
20

30

40

50

60

Time (Minute)

A
ve

ra
g

e 
R

eq
u

es
ts

 P
er

 M
in Light Workload

0 10 20 30 40 50 60
0

10
20
30
40
50
60

Time (Minute)

A
ve

ra
g

e 
R

eq
u

es
ts

 P
er

 M
in Prediction Comparison

Kalman filter
True value
smooth filter

0 10 20 30 40 50 60
0

50

100

150

200

Time (Minute)

A
ve

ra
g

e 
R

eq
u

es
ts

 P
er

 M
in Moderate Workload

0 10 20 30 40 50 60
0

50

100

150

Time (Minute)

A
ve

ra
g

e 
R

eq
u

es
ts

 P
er

 M
in Prediction Comparison

Kalman filter
True value
smooth filter

0 10 20 30 40 50 60
0

200
400
600
800

1000
1200

Time (Minute)

A
ve

ra
g

e 
R

eq
u

es
ts

 P
er

 M
in Heavy Workload

0 10 20 30 40 50 60
0

200
400
600
800

1000
1200

Time (Minute)

A
ve

ra
g

e 
R

eq
u

es
ts

 P
er

 M
in Prediction Comparison

Kalman filter
True value
smooth filter

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

Fig. 7 Comparison under three types of workloads. Figure a, d and g are light, moderate and
heavy workload respectively; Figure b, e and h demonstrate the workload prediction accuracy of
the two method: Smooth filter and Kalman filter; Figure c, f and i report the makespan of using the
two prediction methods. Kalman filter based workload prediction performs better than the Smooth
filter based prediction method

Process Streaming Healthcare Data with Adaptive MapReduce … 61



Time (Minute) 

(a) Data split count for each Map task queue in each minute 

T
he

 Q
ue

ue
 le

ng
th

 o
f e

ac
h 

M
ap

 T
as

k 
T

he
 A

ct
iv

e 
M

ap
 T

as
k 

C
ou

nt
 

Time (Minute) 

(b) Map task count in each minute 

Time (Minute) 

(c) Reduce task count in each minute 

T
he

 A
ct

iv
e 

R
ed

uc
e 

Ta
sk

 C
ou

nt
 

Fig. 8 Demonstration of the Map task queue, Map task number and Reduce task number in each
minute of the light workload case. The Map and Reduce count adaptively follow the workload
trend firmly

62 F. Zhang et al.



case. Under the intermediate workload, the prediction errors of these two filters are
constrained to 14.1% and 35% respectively. For the strong workload scenario, these
values turned to 27.2% and 90.3% for the two methods. Comparing the prediction
error of the two methods across all the workload cases, the maximum margin is the
strong workload case, which is typically 63.1% less by using the Kalman filter
method.

From Figure 7c, f and i, we can see that under the three types of workloads, the
Kalman based workload prediction based method outperforms the smooth filter
based method over up to 28, 34 and 85%. All these results indicate that a good
prediction method only gives a satisfactory estimation of the workload trend, but
also improves the scheduling performance.

In Fig. 8, we demonstrate the scheduling effect of the proposed framework.
Figure 8a illustrates the data split count of each Map task queue every minute.
Figure 8b demonstrates the Map task count that are actively running. Theorems 2
and 3 calculate these Map task count. The count of each Reduced task every minute
is reported in Fig. 8c. The Reduce task counts are calculated by the total data
partition for all the Reduce tasks over the processing capacity.

We can see that as the workload increases, the Map task count also increases
accordingly. As a result, each Map task has more data splits waiting in its queue,
and so do the Reduce tasks. In Fig. 8a, the rising trend becomes less significant
when hitting the 61th minute since no more follow-up stream data splits arrived.
However, it is not until the 71th minute when the Map task number starts to
noticeably reduce as reported in Fig. 8b. The reason is that the data splits in each
Map task is accumulating in the previous 61 min. Until the 71th minute the data
splits of each Map task queue are sufficiently short and the Theorem 3 starts to
reduce the total Map tasks.

6 Conclusions and Future Work

We proposed a task-level adaptive MapReduce framework in this chapter. We
conclude three major aspects of contribution, and then illustrate the future work that
should extend the work.

6.1 Conclusions

A significant amount of scientific applications require effective processing of
streaming data. However, there’s a gap between the state-of-art big data processing
frameworks Hadoop MapReduce for such a need. Since Hadoop MapReduce has
gained its dominance in big-data processing domain for years, even though we have
seen many existing streaming data processing toolkits, such as Storm, Spark
Streaming, we still believe that, it would benefit the whole MapReduce community

Process Streaming Healthcare Data with Adaptive MapReduce … 63



if the framework could be adapted for the need of processing the streaming data,
without having to move to a new framework. Therefore we propose such an
adaptive Hadoop MapReduce framework, which is built on top of MapReduce, but
could also be easily implemented in a virtualized cloud platform. We conclude the
contribution of this work in the following three aspects.

(1) Proposed a task-level adaptive MapReduce framework. Traditional
Hadoop MapReduce fixes the number of the Map and Reduce tasks. In this
new framework, we suggest a framework that removes such a constraint,
which allows the Map and Reduce task number to be adaptive given the
runtime workload. Users don’t have to change their programming habit in
traditional MapReduce, and this framework allows such a transition from
processing fixed dataset to streaming data seamlessly.

(2) Runtime Map and Reduce task estimation. The workload, as well as the
queuing length of each task determines the runtime Map/Reduce task count.
We have created a full-fledged mathematical model to estimate the real time
task number, in order to optimize the streaming data processing rate, as well as
keeping the cost of using compute resource at an acceptable level.

(3) Adaptive task simulator: With a simulator being used not only as a workload
prediction toolkit, but also mathematically calculates the active number of
Map/Reduce tasks in real time as the workload changes. This simulator
implements the mathematically model we propose in this chapter, and esti-
mates the workload in a way we proposed in the subsequent sections.

6.2 Future Work

We suggest extending this work in the following two directions:

(1) Coherent scaling of Map/Reduce tasks and compute resources. Scaling
Map or Reduce task only is mainly investigated in this chapter. However, the
scaling needs to be multi-tier, meaning the number of compute nodes also
needs to align with the existing number of Map or Reduce tasks. It would be
significantly useful if the framework supports the coherent scaling of compute
resources, as well as the Map and Reduce tasks, from both theoretical aspect
and implementation.

(2) Continue the framework in large-scale heterogeneous cloud systems. In a
large cloud platform, the framework can be way complicated than our
experimental scale. Lots of runtime issues, such as resource contention, virtual
resource scaling cost etc., would happen during the course of scaling. This will
bring other concerning issues that go beyond the description of the mathe-
matical framework we propose above.

(3) Release the simulation toolkit. The simulation toolkit should be packaged
into a software library in Hadoop MapReduce online in order to make sure the

64 F. Zhang et al.



service be available for such adaptive MapReduce applications online. For
larger-size virtualized cloud platform, it can be deployed online and expose its
API for public use. Furthermore, we plan to implement the adaptive scaling
framework in Spark, in order to see the effectiveness within in-memory
computing.

Acknowledgements This work was supported in part by the National Nature Science Foundation
of China under grant No. 61233016, by the Ministry of Science and Technology of China under
National 973 Basic Research Grants No. 2011CB302505, No. 2013CB228206, Guangdong
Innovation Team Grant 201001D0104726115 and National Science Foundation under grant
CCF-1016966. The work was also partially supported by an IBM Fellowship for Fan Zhang, and
by the Intellectual Ventures endowment to Tsinghua University.

References

1. S. Ullah, H. Higgins, B. Braem, et al. A Comprehensive Survey of Wireless Body Area
Networks. Journal of Medical Systems 36(3)(2010) 1065–1094.

2. M. Chen, S. Gonzalez, A. Vasilakos, et al. Body Area Networks: A Survey. ACM/Springer
Mobile Networks and Applications. 16(2)(2011) 171–193.

3. R. Schmidt, T. Norgall, J. Mörsdorf, et al. Body Area Network BAN–a key infrastructure
element for patient-centered medical applications. Biomed Tech 47(1)(2002)365–8.

4. J. Dean and S. Ghemawat, Mapreduce: Simplified Data Processing On Large Clusters, in:
Proc. of 19th ACM symp. on Operating Systems Principles, OSDI 2004, pp. 137–150.

5. G. Malewicz, M. H. Austern, A. J. C. Bik, et al. Pregel: A System for Large-Scale Graph
Processing, in: Proc. of the 2008 ACM SIGMOD international conference on Management of
data, SIGMOD 2010, pp. 135–146.

6. Y. Low, J. Gonzalez, A. Kyrola, et al, GraphLab: A New Framework for Parallel Machine
Learning, in: Proc. of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010.

7. Y. Low, J. Gonzalez, A. Kyrola, et al, Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud, Journal Proceedings of the VLDB Endowment, 5(8)
(2012), pp. 716–727.

8. http://aws.amazon.com/elasticmapreduce/.
9. F. Zhang, M. F. Sakr, Cluster-size Scaling and MapReduce Execution Times, in: Proc. of The

International Conference on Cloud Computing and Science, CloudCom 2013.
10. R. Haux, Health information systems–past, present, future, International Journal of Medical

Informatics, 75(3–4)(2006), pp. 268–281.
11. P. L. Reichertz, Hospital information systems—Past, present, future, International Journal of

Medical Informatics, 75(3–4)(2006), pp. 282–299.
12. http://hadoop.apache.org/.
13. J. Talbot, R. M. Yoo and C. Kozyrakis, Phoenix++: modular MapReduce for shared-memory

systems, in: Proc. of the second international workshop on MapReduce and its applications,
MapReduce 2011, pp. 9–16.

14. O. Christopher, C. Greg and C. Laukik, et al, Nova: Continuous Pig/Hadoop Workfows, in:
Proc. of the 2011 ACM SIGMOD international conference on Management of data, SIGMOD
2011, pp. 1081–1090.

15. C. Olston, B. Reed, U. Srivastava, et al, Pig latin: a not-so-foreign language for data
processing, in: Proc. of the 2008 ACM SIGMOD international conference on Management of
data, SIGMOD 2008, pp. 1099–1110.

Process Streaming Healthcare Data with Adaptive MapReduce … 65

http://aws.amazon.com/elasticmapreduce/
http://hadoop.apache.org/


16. P. Bhatotia, A. Wieder and R. Rodrigues, et al, Incoop: MapReduce for incremental
computations, in: Proc. of the 2nd ACM Symposium on Cloud Computing, SoCC 2011.

17. L. Neumeyer, B. Robbins and A. Nair, et al, S4: Distributed Stream Computing Platform, in:
Proc. of the International Workshop on Knowledge Discovery Using Cloud and Distributed
Computing Platforms, KDCloud 10, pp. 170–177.

18. http://storm.incubator.apache.org/.
19. http://www.scribesoft.com/.
20. J. Kreps, N. Narkhede, J. Rao et al. Kafka: A Distributed Messaging System for Log

Processing. in: Proc. of 6th International Workshop on Networking Meets Databases NetDB
2011.

21. http://flume.apache.org/index.html.
22. http://www.streambase.com/.
23. http://www.hstreaming.com/.
24. http://esper.codehaus.org/.
25. R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic

Engineering 82(1)(1960), pp. 35–45.
26. http://www.mathworks.com/products/simevents/.
27. C. Otto, A. Milenković, C. Sanders and E. Jovanov, System architecture of a wireless body

area sensor network for ubiquitous health monitoring, 1(4)(2005), pp. 307–326.
28. E. Jovanov, A. Milenkovic, C. Otto1 and P. C de Groen, A wireless body area network of

intelligent motion sensors for computer assisted physical rehabilitation, Journal of
NeuroEngineering and Rehabilitation, 2(6)(2005), pp. 1–10.

29. M. Arlitt, T. Jin, Workload characterization of the 1998 World Cup Web Site (Tech.
Rep. No. HPL-1999-35R1). Palo Alto, CA: HP Labs.

66 F. Zhang et al.

http://storm.incubator.apache.org/
http://www.scribesoft.com/
http://flume.apache.org/index.html
http://www.streambase.com/
http://www.hstreaming.com/
http://esper.codehaus.org/
http://www.mathworks.com/products/simevents/

	3 Process Streaming Healthcare Data with Adaptive MapReduce Framework
	Abstract
	1 Introduction
	2 Related Work and Our Unique Approach
	2.1 Related Work
	2.2 Our Unique Approach

	3 Problem Formulation of a Real-Life Healthcare Application
	4 Task-Level Adaptive MapReduce Framework
	4.1 Preliminary of Hadoop MapReduce Framework
	4.2 Task-Level Adaptive MapReduce Framework
	4.3 Adaptive Input Data Split Feeding
	4.4 Adaptive Map Task Provisioning
	4.5 Adaptive Reduce Task Provisioning

	5 Experimental Studies
	5.1 Workload Prediction Methods
	5.2 Experimental Settings
	5.3 Experimental Results

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Acknowledgements
	References


